
Chapter 3

Interpolation and Polynomial
Approximation

The computational procedures used in computer software for the evaluation of a li-
brary function such as sin(x), cos(x), or ex, involve polynomial approximation. The
state-of-the-art methods use rational functions (which are the quotients of polynomi-
als). However, the theory of polynomial approximation is suitable for a first course in
numerical analysis, and we consider them in this chapter. Suppose that the function
f(x) = ex is to be approximated by a polynomial of degree n = 2 over the interval
[−1, 1]. The Taylor polynomial is shown in Figure 1.1(a) and can be contrasted with
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Figure 1.1(a)

The Taylor polynomial p(x)=1+x+0.5x2 which approximates f(x)=ex over [−1,1]
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y=1+x+0.5x2 
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The Chebyshev approximation q(x)=1+1.129772x+0.532042x2 for f(x)=ex over [−1,1]

Figure 1.1(b)
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Figure 3.1 (a) The Taylor polynomial p(x) = 1.000000+1.000000x+0.500000x2

which approximate f(x) = ex over [−1, 1]. (b) The Chebyshev approximation q(x) =
1.000000 + 1.129772x + 0.532042x2 for f(x) = ex over [−1, 1].

3



1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Figure 1.2

The graph of the collocation polynomial that passes through (1,2), (2,1), (3,5), (4,6), and ((5,1)

y=P(x) 

Figure 1.2 The graph of the collocation polynomial that passes
through (1,2), (2,1), (3,5), (4,6), and (5,1).

the Chebyshev approximation in Figure 1.1(b). The maximum error for the Taylor
approximation is 0.218282, whereas the maximum error for the Chebyshev polynomial
is 0.056468. In this chapter we develop the basic theory needed to investigate these
matters.

An associated problem involves construction of the collocation polynomial. Given
n + 1 points in the plane (no two of which are aligned vertically), the collocation
polynomial is the unique polynomial of degree ≤ n that passes through the points. In
cases where data are known to a high degree of precision, the collocation polynomial
is sometimes used to find a polynomial that passes through the given data points.
A variety of methods can be used to construct the collocation polynomial: solving
a linear system for its coefficients, the use of Lagrange coefficient polynomials, and
the construction of a divided differences are important for a practitioner of numerical
analysis to know. For example, the collocation polynomial of degree n = 4 that passes
through the five points (1, 2), (2, 1), (3, 5), (4, 6) and (5, 1) is

P (x) =
5x4 − 82x3 + 427x2 − 806x + 504

24
,

and a graph showing both the points and the polynomial is given in Figure 1.2.

3.1 Taylor Series and Calculation of Functions

Limit processes are the basis of calculus. For example, the derivative

f ′(x) = lim
h→0

f(x + h)− f(x)

h

is the limit of the difference quotient where both the numerator and the denomina-
tor go to zero. A Taylor series illustrates another type of limit process. In the case
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an infinite number of terms is added together by taking the limit of certain partial
sums. An important application is their use to represent the elementary functions:
sin(x), cos(x), ex, ln(x), etc. Table 1.1 gives several of the common Taylor series expan-
sions. The partial sums can be accumulated until an approximation to the function
is obtained that has the accuracy specified. Series solutions are used in the areas of
engineering and physics.

Table 1.1 Taylor Series Expansions for Some Common Functions

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · for all x

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · for all x

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · for all x

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · − 1 ≤ x ≤ 1

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ · · · − 1 ≤ x ≤ 1

(1 + x)p = 1 + px +
p(p− 1)

2!
x2 + · · · for |x| < 1

We want to learn how a finite sum can be used to obtain a good approximation
to an infinite sum. For illustration we shall use the exponential series in Table 1.1 to
compute the number e = e1, which is the base of the natural logarithm and exponential
functions. Here we choose x = 1 and use the series

e1 = 1 +
1

1!
+

12

2!
+

13

3!
+

14

4!
+ · · ·+ 1k

k!
+ · · · ,

The definition for the sum of an infinite series in section 1.1 requires that the partial
sums SN tend to a limit. The values of these sums are given in Table 1.2.

A natural way to think about the power series representation of a function is to
view the expansion as the limiting case of polynomials of increasing degree. This needs
to be made precise. What degree should be chosen for the polynomial, and how do we
calculate the coefficients for the powers of x in the polynomial? Theorem 1.1 answers
these questions.

Table 1.2 Partial Sums Sn Used to Determine e
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n Sn = 1 + 1
1!

+ 1
2!

+ · · ·+ 1
n!

0 1.0
1 2.0
2 2.5
3 2.666666666666. . .
4 2.708333333333. . .
5 2.716666666666. . .
6 2.718805555555. . .
7 2.718253968254. . .
8 2.718278769841. . .
9 2.718281525573. . .
10 2.718281801146. . .
11 2.718281826199. . .
12 2.718281828286. . .
13 2.718281828447. . .
14 2.718281828458. . .
15 2.718281828459. . .

Theorem 1.1 (Taylor Polynomial Approximation). Assume that f ∈ CN+1[a, b]
and x0 ∈ [a, b] is a fixed value. If x ∈ [a, b], then

f(x) = PN(x) + EN(x), (3.1)

where PN(x) is a polynomial that can be used to approximate f(x):

f(x) ≈ PN(x) =
N∑

k=0

f (k)(x0)

k!
(x− x0)

k. (3.2)

The error term EN(x) has the form

EN(x) =
f (N+1)(c)

(N + 1)!
(x− x0)

N+1 (3.3)

for some value c = c(x) that lies between x and x0.
Proof. The proof is left as an exercise.

Relation (1.2) indicates how the coefficients of the Taylor polynomial are calculated.
Although the error term (1.3) involves a similar expression, notice that f (N+1)(c) is to
be evaluated at an undetermined number c that depends on the value of x. For this
reason we do not try to evaluate EN(x); it is used to determine a bound for the accuracy
of the approximation.

Example 1.1 Show why 15 terms are all that are needed to obtain the 13-digit ap-
proximation e = 2.718281828459 in Table 1.2.

Expand f(x) = ex in a Taylor polynomial of degree 15 using the fixed value x0 = 0
and involving the powers (x− 0)k = xk. The derivatives required are f ′(x) = f”(x) =
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· · · = f (16) = ex. The first 15 derivatives are used to calculate the coefficients ak = e0/k!
and are used to write

P15(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ x15

15!
. (3.4)

Setting x = 1 in (4)m gives the partial sum S15 = P15(1). The remainder term is needed
to show the accuracy of the approximation:

E15 =
f (16)(c)x16

16!
. (3.5)

Since we chose x0 = 0 and x = 1, the value c lies between them (i.e., 0 < c < 1), which
implies that ec < e1. Notice that the partial sums in Table 4.2 are bounded above
by 3. Combining these two inequalities yields ec < 3, which is used in the following
calculation

|E15(1)| = |f (16)(c)|
16!

≤ ec

16!
<

3

16!
< 1.433844× 10−13.

Therefore, all the digits in the approximation e ≈ 2.718281828459 are correct, because
the actual error (whatever it is) must be less than 2 in the thirteenth decimal place.

Instead of giving a rigorous proof of Theorem 4.1, we shall discuss some of the
features of the approximation; the reader can look in any standard reference text on
calculus for more details. For illustration we again use the function f(x) = ex and the
value x0 = 0. From elementary calculus we know that the slope of the curve y = ex at
the same formula that would be obtained if we used N = 1 in Theorem 1.1; that is,
P1(x) = f(0) + f ′(0)x/1! = 1 + x. Therefore, P1(x) is the equation of the tangent line
to the curve. The graphs are shown in Figure 1.3.

Observe that the approximation ex ≈ 1 + x is good near the center x0 = 0 and that
the distance between the curves grows as x moves away from 0. Notice that the slopes
of the curves agree at (0, 1). In calculus we learned that the second derivative indicates
whether a curve is concave up or down. The study of curvature1 shows that if two
curves y = f(x) and y = g(x) have the property that f(x0) = g(x0), f

′(x0) = g′(x0),
and f ′′(x0) = g′′(x0) then they have the same curvature at x0. This property would be
desirable for a polynomial function that approximate f(x). Corollary 4.1 shows that
the Taylor polynomial has this property for N ≥ 2.

1The curvature K of a graph y = f(x) at (x0, y0) is defined by K = |f”(x0)|/(1 + [f ′(x0)]2)3/2.
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Figure 1.3 The graphs of y=ex and y=P
1
(x)=1+x.
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Figure 1.3 The graphs of y = ex and y = P1(x) = 1 + x.

Corollary 1.1. If PN(x) is the Taylor polynomial of degree N given in Theorem
1.1, then

P
(k)
N (x0) = f (k)(x0) for k = 0, 1, . . . , N (3.6)

Proof. Set x = x0 in equation (1.2) and (1.3), and the result is Pn(x0) = f(x0). Thus
statement (1.6) is true for k = 0. Now differentiate the right-hand side of (1.2) and get

P ′
N(x) =

N∑

k=1

f (k)(x0)

(k − 1)!
(x− x0)

k−1 =
N−1∑

k=0

f (k+1)(x0)

k!
(x− x0)

k. (3.7)

Set x = x0 in (1.7) to obtain P ′
N(x0) = f ′(x0). Thus statement (1.6) is true for k = 1.

Successive differentiations of (1.7) will establish the other identities in (1.6). The details
are left as an exercise.

Applying Corollary 1.1, we see that y = P2(x) has the properties f(x0) = P2(x0), f
′(x0) =

P ′
2(x0), and f ′′(x0) = P ′′

2 (x0); hence the graphs have the same curvature at x0. For ex-
ample, consider f(x) = ex and P2(x) = 1 + x + x2/2. The graphs are shown in Figure
1.4 and it is seen that they curve up in the same fashion at (0, 1).
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Figure 1.4 The graphs of y=ex and y=P
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(x)=1+x+x2/2.
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Figure 1.4 The graphs of y = ex and y = P2(x) = 1 + x + x2/2.
In the theory of approximation, one seeks to find an accurate polynomial approxima-

tion to the analytic function2 f(x) over [a, b]. This is one technique used in developing
computer software. The accuracy of a Taylor polynomial is increased when we choose
N large. The accuracy of any given polynomial will generally decrease as the value of
x moves away from the center x0. Hence we must choose N large enough and restrict
the maximum value of |x− x0| so that the error does not exceed a specified bound. If
we choose the interval width to be 2R and x0 in the center (i.e., |x − x0| < R), the
absolute value of the error satisfies the relation

|error| = |EN(x)| ≤ MRN+1

(N + 1)!
. (3.8)

where M ≤ max{|f (N+1)(z)| : x0 − R ≤ z ≤ x0 + R}. If N is fixed and the derivatives
are uniformly bounded, the error bound in (1.8) is proportional to RN+1/(N + 1)! and
decreases if R goes to zero as N gets large. Table 1.3 shows how the choices of these two
parameters affect the accuracy of approximation ex ≈ PN(x) over the interval |x| ≤ R.
The error is smallest when N is largest and R smallest. Graphs for P2, P3 and P4 are
given in Figure 1.5.

Table 1.3 Values for the Error Bound |error| < eRRN+1/(N + 1)! Using the Ap-
proximation ex ≈ PN(x) for |x| < R

R = 2.0,
|x| ≤ 2.0

R = 1.5,
|x| ≤ 1.5

R = 1.0,
|x| ≤ 1.0

R = 0.5,
|x| ≤ 0.5

ex ≈ P5(x) 0.65680499 0.07090172 0.00377539 0.00003578
ex ≈ P6(x) 0.18765837 0.01519323 0.00053934 0.00000256
ex ≈ P7(x) 0.04691464 0.00284873 0.00006742 0.00000016
ex ≈ P8(x) 0.01042548 0.00047479 0.00000749 0.00000001
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Figure 1.5 The graphs of y=ex, y=P
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2The function f(x) is analytic at x0 if it has continuous derivatives of all orders and can be repre-
sented as a Taylor series in an interval about x0.
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Figure 1.5 The graphs of y = ex, y = P2(x), y = P3(x), and y = P4(x).

Example 1.2 Establish the error bounds for the approximation ex ≈ P8(x) on each of
the intervals |x| ≤ 1.0 and |x| ≤ 0.5.

If |x| ≤ 1.0. then letting R = 1.0 and |f (9)(c)| = |ec| ≤ e1.0 = M in (1.8) implies
that

|error| = |E8(x)| ≤ e1.0(1.0)9

9!
≈ 0.00000749.

If |x| ≤ 0.5, then letting R = 0.5 and |f (9)(c)| = |ec| ≤ e0.5 = M in (1.8) implies
that

|error| = |E8(x)| ≤ e0.5(0.5)9

9!
≈ 0.00000001.

Example 1.3. If f(x) = ex, show that N = 9 is the smallest integer, so that the
|error| = |EN(x)| ≤ 0.0000005 for x in [−1, 1]. Hence P9(x) can be used to compute
approximate value of ex that will be accurate in the sixth decimal place.

We need to find the smallest integer N so that

|error| = |EN(x)| ≤ ec(1)N+1

(N + 1)!
≈ 0.0000005.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5 Figure 1.6 The graph of the error y=E
9
(x)=ex−P

9
(x).

x

y

y=E
9
(x) 

Figure 1.6 The graph of the error y = E9(x) = ex − P9(x).
In Example 1.2 we saw that N = 8 was too small, so we try N = 9 and discover that

|EN(x)| ≤ e1(1)9+1/(9 + 1)! ≤ 0.000000749. This value is slightly larger than desired;
hence we would be likely to choose N = 10. But we used ec ≤ e1 as a crude estimate
in finding the error bound. Hence 0.000000749 is a little larger than the actual error.
Figure 1.6 shows a graph of E9(x) = ex−P9(x). Notice that the maximum vertical range
is about 3 × 10−7 and occurs at the right end point (1, E9(1)). Indeed, the maximum
error on the interval is E9(1) = 2.718281828− 2.718281526 ≈ 3.024× 10−7. Therefore,
N = 9 is justified.
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3.1.1 Methods for Evaluating a Polynomial

There are several mathematically equivalent ways to evaluate a polynomial. Consider,
for example, the function

f(x) = (x− 1)8. (3.9)

The evaluation of f will require the use of an exponential function. Or the binomial
formula can be used to expand f(x) in powers of x:

f(x) =
8∑

k=0

(
8

k

)
x8−k(−1)k = x8−8x7+28x6−56x5+70x4−56x3+28x2−8x+1. (3.10)

Horner’s method (see Section 1.1), which is also called nested multiplication, can
be used to evaluate the polynomial in (1.10). When applied to formula (1.10), nested
multiplication permits us to write

f(x) = (((((((x− 8)x + 28)x− 56)x + 70)x− 56)x + 28)x− 8)x + 1. (3.11)

To evaluate f(x) now requires seven multiplications and eight additions or subtrac-
tions. The necessity of using an exponential function to evaluate the polynomial has
now been eliminated.

We end this section with the theorem that relates the Taylor series in Table 1.1 and
the polynomials of Theorem 1.1.

Theorem 1.2 (Taylor Series). Assume that f(x) is analytic and has continuous
derivatives of all order N = 1, 2, . . ., on an interval (a, b) containing x0. Suppose that
the Taylor polynomial (1.2) tend to a limit

S(x) = lim
N→∞

PN(x) = lim
N→∞

N∑

k=0

f (k)(x0)

k!
(x− x0)

k, (3.12)

then f(x) has the Taylor series expansion

f(x) =
∞∑

k=0

f (k)(x0)

k!
(x− x0)

k. (3.13)

Proof. This follows directly from the definition of convergence of series in Section 1.1.
This limit condition is often stated by saying that the error term must go to zero as
N goes to infinite. Therefore, a necessary and sufficient condition for (1.13) to hold is
that

lim
N→∞

EN(x) = lim
N→∞

f (N+1)(c)(x− x0)
N+1

(N + 1)!
= 0, (3.14)

where c depends on N and x.
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3.1.2 Exercises for Taylor Series and Calculation of Functions

1. Let f(x) = sin(x) and apply Theorem 1.1.
(a) Use x0 = 0 and find P5(x), P7(x). and P9(x).
(b) Show that if |x| ≤ 1 then the approximation

sin(x) ≈ x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!

has the error bound E9(x) < 1/10! ≤ 2.75574× 10−7.
(c) Use x0 = π/4 and find P5(x), which involves powers of (x− π/4).

2. Let f(x) = cos(x) and apply Theorem 1.1.
(a) Use x0 == 0 and find P4(x), P6(x) and P8(x).
(b) Show that if |x| ≤ 1 then the approximation

cos(x) ≈ 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!

has the error bound E8(x) < 1/9! ≤ 2.75574× 10−6.
(c) Use x0 = π/4 and find P4(x), which involves powers of (x− π/4).

3. Does f(x) = x1/2 have a Taylor series expansion about x0 = 0? Justify
your answer. Does the function f(x) = x1/2 have a Taylor series expansion
about x0 = 1? Justify your answer.

4. (a) Find the Taylor polynomial of degree N = 5 for f(x) = 1/(1 + x)
expanded about x0 = 0.

(b) Find the error term E5(x) for the polynomial in part (a).
5. Find the Taylor polynomial of degree N = 3 for f(x) = e−x2/2 expanded

about x0 = 0.
6. Find the Taylor polynomial of degree N = 3, P3(x), for f(x) = x3 − 2x2 + 2x

expanded about x0 = 1. Show that f(x) = P3(x).
7. (a) Find the Taylor polynomial of degree N = 3 for f(x) = x1/2 expanded

about x0 = 4.
(b) Find the Taylor polynomial of degree N = 3 for f(x) = x1/2 expanded

about x0 = 9.
(c) Determine which of the polynomials in parts (a) and (b) best approxi-

mates (6.5)1/2.
8. Use f(x) = (2 + x)1/2 and apply Theorem 1.1.

(a) Find the Taylor polynomial P3(x) expanded about x0 = 2.
(b) Use P3(x) to find an approximation to 31/2.
(c) Find the maximum value of |f (4)(c)| on the interval 1 ≤ c ≤ 3 and find

a bound for |E3(x)|.
9. Determine the degree of the Taylor polynomial PN(x) expanded about

x0 = 0 that should be used to approximate e0.1 so that the error is less
than 10−6.

10. Determine the degree of the Taylor polynomial PN(x) expanded about
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x0 = π that should be used to approximate cos(33π/32) so that the error
is less than 10−6.

11. (a) Find the Taylor polynomial of degree N = 4 for F (x) =
∫ x
−1 cos(t2)dt

expanded about x0 = 0.
(b) Use the Taylor polynomial to approximate F (0.1).
(c) Find a bound on error to the approximation in part (b).

12. (a) Use the geometric series

1

1 + x2
= 1− x2 + x4 − x6 + x8 − · · · for |x| < 1.

and integrate both sides term by term to obtain

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ · · · for |x| < 1.

(b) Use π/6 = arctan(3−1/2) and the series in part (a) to show that

π = 31/2 × 2

(
1− 3−1

3
+

3−2

5
− 3−3

7
+

3−4

9
− · · ·

)

(c) Use the series in part (b) to compute π accurate to eight digits.
Fact. π ≈ 3.141592653589793284 . . ..

13. Use f(x) = ln(1 + x) and x0 = 0, and apply Theorem 1.1.
(a) Show that f (k)(x) = (−1)k−1((k − 1)!)/(1 + x)k.
(b) Show that the Taylor polynomial of degree N is

PN(x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)N−1xN

N
.

(c) Show that the error term for PN(x) is

EN(x) =
(−1)NxN+1

(N + 1)(1 + c)N+1
.

(d) Evaluate P3(0, 5), P6(0, 5), and P9(0, 5). Compute with ln(1.5).
(e) Show that if 0.0 ≤ x ≤ 0.5, then the approximation

ln(x) ≈ x− x2

2
+

x3

3
− · · ·+ x7

7
− x8

8
+

x9

9

has the error bound |E9| ≤ 0.00009765 . . ..
14. Binomial series. Let f(x) = (1 + x)p and x0 = 0.

(a) Show that f (k)(x) = p(p− 1) · · · (p− k + 1)(1 + x)p−k.
(b) Show that the Taylor polynomial of degree N is

PN(x) = 1 + px +
p(p− 1)x2

2!
+ · · ·+ p(p− 1) · · · (p−N + 1)xN

N !
.

13



(c) Show that

EN(x) = p(p− 1) · · · (−N)xN+1/((1 + c)N+1(N + 1)!).

(d) Set p = 1/2 and compute P2(0, 5), P4(0, 5), and P6(0, 5). Compute
with (1.5)1/2.

(e) Show that if 0.0 ≤ x ≤ 0.5 then the approximation

(1 + x)1/2 ≈ 1 +
x

2
− x2

8
+

x3

16
− 5x4

128
+

7x5

256

has the error bound |E5| ≤ (0.5)6(21/1024) = 0.0003204 · · ·.
(f) Show that if p = N is a positive integer, then

PN(x) = 1 + Nx +
N(N − 1)x2

2!
+ · · ·+ NxN−1 + xN .

Notice that this is the familiar binomial expansion.
15. Find c such that E4 < 10−6 whenever |x− x0| < c.

(a) Let f(x) = cos(x) and x0 = 0.
(b) Let f(x) = sin(x) and x0 = π/2.
(c) Let f(x) = ex and x0 = 0.

16. (a) Suppose that y = f(x) is an even function (i.e., f(−x) = f(x) for all
x in the domain of f). What can be said about PN(x)?

(b) Suppose that y = f(x) is an odd function (i.e., f(−x) = −f(x) for
all x in the domain of f). What can be said about PN(x)?

17. Let y = f(x) be a polynomial of degree N . If f(x0) > 0 and f ′(x0), . . . , f
(N)(x0)

≥ 0, show that all real roots of f are less than x0. Hint. Expand f in a
Taylor polynomial of degree N about x0.

18. Let f(x) = ex, Use Theorem 1.1 to find PN(x), for N = 1, 2, 3, . . .,
expanded about x0 = 0. Show that every real root of PN(x) has multiplicity
less than of equal to one. Note. If p is a root of multiplicity M of the
polynomial P (x), then p is a root of multiplicity M − 1 of p′(x).

19. Finish the proof of Corollary 1.1 by writing down the expression for
P

(k)
N (x) and showing that

P
(k)
N (x0) = f (k)(x0) fork = 2, 3, . . . , N.

Exercises 20 and 21 form a proof of Taylor’s theorem.
20. Let g(t) and its derivatives g(k)(t), for k = 1, 2, . . . N + 1, be continuous

on the interval (a, b), which contains x0. Suppose that there exist two
distinct points x and x0 such that g(x) = 0, and g(x0) = g′(x0) = . . . =
g(N)(x0) = 0. Prove that there exists a value c that lies between x0 and x
such that g(N+1)(c) = 0.

Remark. Note that g(t) is a function of t, and the values x and x0 are to
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be treated as constants with respect to the variable t.
Hint. Use Rolle’s theorem (Theorem 1.5, Section 1.1) on the interval

with end points x0 and x to find the g′(t) on the interval with end points
x0 and c1 to find the number c2 such that g′′(c2) = 0. Inductively report
the process until the number cN+1 is found such that g(N+1)(cN+1) = 0.

21. Use the result of Exercise 20 and the special function

g(t) = f(t)− PN(t)− EN(x)
(t− x0)

N+1

(x− x0)N+1
,

where PN(x) is the Taylor polynomial of degree N , to prove that the error
term EN(x) = f(x)− PN(x) has the form

EN(x) = f (N+1)(c)
(x− x0)

N+1

(N + 1)!
.

Hint. Find g(N+1)(t) and evaluate it at t = c.

3.1.3 Algorithms and Programs

The matrix nature of MATLAB allows us to quickly evaluate functions at a large
number of values. If X=[-1 0 1], then sin(X) will produce [sin(-1) sin(0) sin(1)]. Similarly,
if X=-1:0.1:1, then Y=sin(X) will produce a matrix Y of the same dimension as X with
the appropriate values of sine. These two row matrices can be displayed in the form of
a table by defining the matrix D=[X’ Y’] (Note. The matrices X and Y must be of the
same length.)

1. (a) Use the plot command to plot sin(x), P5(x), P7(x), and P9(x) from
Exercise 1 on the same graph using the interval −1 ≤ x ≤ 1.

(b) Create a table with columns that consist of sin(x), P5(x).P7)x), and
P9(x) evaluated at 10 equally spaced values of x from the interval
[−1, 1].

2. (a) Use the plot command to plot cos(x), P4(x), P6(x), and P8(x) from
Exercise 2 on the same graph using the interval −1 ≤ x ≤ 1.

(b) Create a table with columns that consist of cos(x), P4(x).P6(x), and
P8(x) evaluated at 19 equally spaced values of x from the interval
[−1, 1].

3.2 Introduction to Interpolation

In section 1.1 we saw how a Taylor polynomial can be used to approximate the function
f(x). The information needed to construct the Taylor polynomial is the value of f and
its derivatives at x0. A shortcoming is that the higher-order derivatives must be known,
and often they are either not available or they are hard to compute.
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Suppose that the function y = f(x) is known at the N + 1 points (x0, y0), . . . ,
(xN , yN), where the values xk are spread out over the interval [a, b] and satisfy

a ≤ x0 < x1 < · · · < xN ≤ b and yk = f(xk).

A polynomial P (x) of degree N will be constructed that passes through these N + 1
points. In the construction, only the numerical values xk and yk are needed. Hence
the higher-order derivatives are not necessary. The polynomial P (x) can be used to
approximate f(x) over the entire interval [a, b]. However, if the error function E(x) =
f(x) − P (x) is required. then we will need to know f (N+1)(x) and a bound for its
magnitude, that is

M = max{|f (N+1)(x)| : a ≤ x ≤ b}.
Situations in statistical and scientific analysis arise where the function y = f(x) is

available only at N+1 tabulated points (xk, yk), and a method is needed to approximate
f(x) at nontabulated abscissas. If there is a significant amount of error in the tabulated
values, then the methods of curve fitting in Chapter 5 should be considered. On the
other hand, if the points (xk, yk) are known to a high degree of accuracy, then the
polynomial curve y = P (x) that passes through them can be considered. When x0 <
x < xN , the approximation P (x) is called an interpolated value. If either x0 < x <
xN , the approximation P (x) is called an extrapolated value. Polynomial are used to
design software algorithms to approximate functions, for numerical differentiation, for
numerical integration, and for making computer-drawn curves that must pass through
specified points.
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Figure 7(a)

y=P(x) 

(4,P(4)) 

(5.5,P(5.5)) 

Figure 1.7 (a) The approximating polynomial P (x) can be
used for interpolation at the point (4, P (4)) and extrapolation
at the point (5.5, P (5.5)).
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Figure 7(b)

y=P(x) 

(4,P(4)) 

The tangent line
has slope P’(4). 

Figure 1.7 (b) The approximating polynomial P (x) is
differentiated and P ′(x) is used to find the slope at the
interpolation point (4, P (4)).

Let us briefly mention how to evaluate the polynomial P (x):

P (x) = aNxN + aN−1x
N−1xN−1 + · · ·+ a2x

2 + a1x + a0. (3.15)

Horner’s method of synthetic division is an efficient way to evaluate P (x). The deriva-
tive P ′(x) is

P ′(x) = NaNxN−1 + (N − 1)aN−1x
N−1xN−1 + · · ·+ 2a2x + a1. (3.16)

and the indefinite integral I(x) =
∫

P (x)dx, which satisfies I ′(x) = P (x), is

I(x) =
aNxN+1

N + 1
+

aN−1x
N

N
+ · · ·+ a2x

3

3
+

a1x
2

2
+ a0x + C, (3.17)

where C is the constant of integration. Algorithm 1.1 (end of Section 1.2) shows how
to adapt Horner’s method to P ′(x) and I(x).

Example 1.4. The polynomial P (x) = −0.02x3 + 0.2x3 − 0.4x2 + 1.28 passes through
the four points (1, 1.06), (2, 1.12), (3, 1.34), and (5, 1.78). Find (a) P (4), (b) P ′(4), (c)∫ 4
1 P (x)dx, and (d) P (5.5). Finally, (e) show how to find the coefficients of P (x).

Use Algorithm 1.1(i)-(iii)(this is equivalent to the process in Table 1.2) with x = 4.

(a) b3 = a3 = −0.02

b2 = a2 + b3x = 0.2 + (−0.02)(4) = 0.12

b1 = a1 + b2x = −0.4 + (0.12)(4) = 0.08

b0 = a0 + b1x = 1.28 + (0.08)(4) = 1.60.

The interpolated value is P (4) = 1.60(see Figure 1.7(a)).

(b) d2 = 3a3 = −0.06
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d1 = 2a2 + d2x = 0.4 + (−0.06)(4) = 0.16

d0 = a1 + d1x = −0.4 + (0.16)(4) = 0.24

The numerical derivatives is P ′(4) = 0.24(see Figure 1.7(b)).

(c) i4 =
a3

4
= −0.005

i3 =
a2

3
+ i4x = 0.06666667 + (−0.005)(4) = 0.04666667

i2 =
a1

2
+ i3x = −0.2 + (0.04666667)(4) = −0.01333333

i1 = a0 + i2x = 1.28 + (−0.01333333)(4) = 1.22666667

i0 = 0 + i1x = 0 + (1.22666667)(4) = 4.90666667.

Hence I(4) = 4.90666667. Similarly, I(1) = 1.14166667. Therefore,
∫ 4
1 P (x)dx =

I(4)− I(1) = 3.765 (see Figure 1.8).
(d) Use Algorithm 1.1(i) with x = 5.5.

b3 = a3 = −0.02

b2 = a2 + b3x = 0.2 + (−0.02)(5.5) = 0.09

b1 = a1 + b2x = −0.4 + (0.09)(5.5) = 0.095

b0 = a0 + b1x = 1.28 + (0.095)(5.5) = 1.8025.

The extrapolated value is P (5.5) = 1.8025 (see Figure 1.7(a)).
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Figure 1.8

y=P(x) 

Figure 1.8 The approximating polynomial P (x) is integrated and its antiderivative
is used to find the area under the curve for −1 ≤ x ≤ 4.
(e) The methods of Chapter 3 can be used to find the coefficients. Assume that P (x) =
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A + Bx + Cx2 + Dx3; then at each value x = 1, 2, 3, and 5 we get a linear equation
involving A, b, C, and D.

Atx = 1 : A + 1B + 1C + 1D = 1.06
Atx = 2 : A + 2B + 4C + 8D = 1.12
Atx = 3 : A + 3B + 9C + 27D = 1.34
Atx = 5 : A + 5B + 25C + 125D = 1.78

(3.18)

The solution to (1.18) is A = 1.28, B = −0.4, C = 0.2, and D = −0.2.
This method for finding the coefficients is mathematically sound, but sometimes the

matrix is difficult to solve accurately. In this chapter we design algorithms specifically
for polynomials.

Let us return to the topic of using a polynomial to calculate approximations to
a known function. In Section 1.1 we saw that the fifth-degree Taylor polynomial for
f(x) = ln(1 + x) is

T (x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
. (3.19)

If T (x) is used to approximate ln(1 + x) on the interval [0, 1], then the error is 0 at
x = 0 and is largest when x = 1 (see Table 1.4). In deed, the error between T (1) and
the correct value ln(1) is 13%. We seek a polynomial of degree 5 that will approximate
ln(1 + x) better over the interval [0, 1]. The polynomial P (x) in Example 1.5 is an
interpolating polynomial and will approximate ln(1 + x) with an error no bigger than
0.00002385 over the interval [0, 1].

Table 1.4 Values of the Taylor Polynomial T (x) of Degree 5, and
the Function ln(1 + x) and the Error ln(1 + x)− T (x) on [0, 1]

x
Taylor polynomial

T (x)
Function
ln(1 + x)

Error
ln(1 + x)− T (x)

0.0 0.00000000 0.00000000 0.00000000
0.2 0.18233067 0.18232156 0.00000911
0.4 0.33698133 0.33647224 0.00050906
0.6 0.47515200 0.47000363 0.00514837
0.8 0.61380267 0.58778666 0.02601601
1.0 0.78333333 0.69314718 0.09018615

Example 1.5. Consider the function f(x) = ln(1 + x) and the polynomial

P (x) = 0.02957026x5 − 0.12895295x4 + 0.28249626x3

−0.48907554x2 + 0.99910735x

based on the six nodes xk = k/5 for k = 0, 1, 2, 3, 4, and 5. The following are empirical
descriptions of the approximation P (x) ≈ ln(1 + x).

Table 1.5 Values of the Approximating Polynomial P (x) of Example
1.5 and the Function f(x) = ln(1 + x) and the Error E(x) on [−0.1, 1.1].
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x
Approximating

polynomial, P (x)
Function,

f(x) = ln(1 + x)
Error, E(x)

= ln(1 + x)− P (x)
-0.1 0.10509718 0.10536052 0.00026334
0.0 0.00000000 0.00000000 0.00000000
0.1 0.09528988 0.09531018 0.00002030
0.2 0.18232156 0.18232156 0.00000000
0.3 0.26327015 0.26236426 0.00000589
0.4 0.33647224 0.33647224 0.00000000
0.5 0.40546139 0.40546511 0.00000372
0.6 0.47000363 0.47000363 0.00000000
0.7 0.53063292 0.53062825 0.00000467
0.8 0.58778666 0.58778666 0.00000000
0.9 0.64184118 0.64185389 0.00001271
1.0 0.69314718 0.69314718 0.00000000
1.1 0.74206529 0.74193734 0.00012795
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y=ln(1+x) 

1. P (xk) = f(xk) at each node (see Table 1.5).
2. The maximum error on the interval [−0.1, 1.1] occurs at x = −0.1 and
|error| ≤ 0.00026334 for −0.1 ≤ x ≤ 1.1 (see Figure 1.10) Hence the
graph of y = P (x) would appear identical to that of y = ln(1 + x) (see
Figure 1.9).

3. The maximum error on the interval [0, 1] occurs at x = 0.06472456 and
|error| ≤ 0.00002385 for 0 ≤ x ≤ 1 (see Figure 1.10).

Remark. At a node xk we have f(xk) = P (xk). Hence E(xk) = 0 at a node. The graph
of E(x) = f(x)− P (x) looks like a vibrating string, with the nodes being the abscissa
where there is no displacement.
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Algorithm 1.1 (Polynomial Calculus). To evaluate the polynomialP (x),
its derivativeP ′(x), and its integral

∫
P (x)dx by performing synthetic division.

INPUT N {Degree of P (x)}
INPUT A(0), A(1), . . . , A(N) {Coefficients of P (x)}
INPUT C {Constant of integration}
INPUT X {Independent variable}

(i) Algorithm to Evaluate P (x)
B(N) := A(N)
For K = N − 1 DOWNTO 0 DO

B(K); = A(K) + B(K + 1) ∗X
PRINT”The value P (x) is”, B(0)

Space-saving version :
Poly := A(N)
FOR K = N − 1 DOWNTO 0 DO

Poly := A(K) + poly ∗X
PRINT ”The value P (x) is”, Poly

(ii) Algorithm to Evaluate P ′(x)
D(N − 1) := N ∗ A(N)
FOR K = N − 1 DOWNTO 1 DO

D(K − 1); = K ∗ A(K) + D(K) ∗X
PRINT ”The value P ′(x) is”, D(0)

Space-saving version :
Deriv := N ∗ A(N)
FOR K = N − 1 DOWNTO 1 DO

Deriv := K ∗ A(K) + Deriv ∗X
PRINT ”The value P ′(x) is”, Deriv

(iii) Algorithm to Evaluate P (x)
I(N + 1) := A(N)/(N + 1)
FOR K = N DOWNTO 1 DO

I(K); = A(K − 1)/K + I(K + 1) ∗X
I(0) := C + I(1) ∗X
PRINT ”The value I(x) is”, I(0)

Space-saving version :
Integ := A(N)/(N + 1)
FOR K = N DOWNTO 1 DO

Integ := A(K − 1)/K + Integ ∗X
Integ := C + integ ∗X
PRINT ”The value I(x) is”, Integ

3.2.1 Exercises for Introduction to Interpolation

1. Consider P (x) = −0.02x3 + 0.1x2 − 0.2x + 1.66, which passes through the
four points (1, 1.54), (2, 1.5), (3, 1.42), and (5, 0.66).
(a) Find P (4).
(b) Find P ′(4).
(c) Find the definite integral of P (x) taken over [1, 4].
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(d) Find the extrapolated value P (5.5).
(e) Show how to find the coefficients of P (x).

2. Consider P (x) = −0.04x3 + 0.14x2 − 0.16x + 2.08, which passes through
the four points (0, 2.08), (1, 2.02), (2, 2.00), and (4, 1.12).
(a) Find P (3).
(b) Find P ′(3).
(c) Find the definite integral of P (x) taken over [0, 3].
(d) Find the extrapolated value P (4.5).
(e) Show how to find the coefficients of P (x).

3. Consider P (x) = −0.0292166667x3 + 0.275x2 − 0.570833333x− 1.375, which
passes through the four points (1, 1.05), (2, 1.10), (3, 1.35), and (5, 1.75).
(a) Show that the ordinate 1.05, 1.10, 1.35, and 1.75 differ from those of

example 1.4 by less than 1.8%, yet the coefficients of x3 and x differ
by more than 42%.

(b) Find P (4) and compare with Example 1.4.
(c) Find P ′(4) and compare with Example 1.4.
(d) Find the definite integral of P (x) taken over [1, 4] and compare with

Example 1.4.
(e) Find the extrapolated value P (5.5) and compare with Example 1.4.
Remark. Part (a) shows that the computation of the coefficients of an
interpolating polynomial is an ill-conditioned problem.

3.2.2 Algorithms and Programs

1. Write a program in MATLAB that will implement Algorithm 1.1. The pro-
gram should accept the coefficients of the polynomial P (x) = aNxN + aN−1

xN−1 + · · ·+ a2x
2 + a1x + a0 as an 1×N matrix: P = [aN aN−1 · · · a2 a1 a0].

2. For each of the given functions, the fifth-degree polynomial P (x) passes
through the six points (0, f(0)), (0.2, f(0.2)), (0.4, f(0.4)), (0.6, f(0.6)), (0.8,
f(0.8)), (1, f(1)). The six coefficients of P (x) are a0, a1, · · · , a5, where

P (x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0.

(i) Find the coefficients of P (x) by solving the 6× 6 system of linear
equations

a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 = f(xj)

using xj = (j − 1)/5 and j = 1, 2, 3, 4, 5, 6 for the six unknowns {ak}5
k=0.

(ii) Use your MATLAB program from Problem 1 to compute the interpo-
lated values P (0.3), P (0.4), and P (0.5) and compare with f(0, 3), f(0.4),
and f(0.5), respectively.

(iii) Use your MATLAB program to compute the extrapolated values P (−0.1)
and P (1.1) and compare with f(−0.1) and (f(1.1), respectively.
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(iv) Use your MATLAB program to find the integral of P (x) taken over
[0, 1] and compare with the integral of f(x) taken over [0, 1]. Plot f(x)
over [0, 1] on the same graph.

(v) Make a table of value for P (xk), f(xk), and E(xk) = f(xk)− P (xk),
where xk = k/100 for k = 0, 1, . . . , 100.
(a) f(x) = ex

(b) f(x) = sin(x)
(c) f(x) = (x + 1)(x+1)

3. A portion of an amusement park ride is to be modeled using three polyno-
mials. The first section is to be a first-degree polynomial, P1(x), that covers
a horizontal distance of 100 feet, starts at a height of 110 feet, and ends at
a height of 60 feet. The third section is to also be a first-degree polynomial,
Q1(x), that covers a horizontal distance of 50 feet, starts at a height of 65
feet, and ends at a height of 70 feet. The middle section is to be a polyno-
mial, P (x) (of smallest possible degree), that covers a horizontal distance
150 feet.
(a) Find expressions for P (x), P1(x), and Q1(x) such that P (100) = P1(100),

P ′(100) = P ′
1(100), P (250) = Q1(250), and P ′(250) = Q′

1(250) and the
curvature of P (x) equals the curvature of P1(x) at x = 100 and equals
the curvature of Q1(x) at x = 250.

(b) Plot the graphs of P1(x), P (x), and Q1(x) on the same coordinate
system.

(c) Use Algorithm 1.1(iii) to find the average height of the ride over the
given horizontal distance.

3.3 Lagrange Approximation

Interpolation means to estimate a missing function value by taking a weighted average
of known function values at neighboring points. Linear interpolation uses a line segment
that passes through two points. The slope between (x0, y0) and x1, y1) is m = (y1 −
y0)/(x1 − x0), and the point-slope formula for the line y = m(x − x0) + y0 can be
rearranged as

y = P (x) = y0 + (y1 − y0)
(x− x0)

(x1 − x0)
. (3.20)

When formula (1.20) is expanded, the result is a polynomial of degree≤ 1. Evaluation
of P (x) at x0 and x1 produces y0 and y1, respectively:

P (x0) = y0 + (y1 − y0)(0) = y0,
P (x1) = y0 + (y1 − y0)(1) = y1.

(3.21)

The French mathematician Joseph Louis Lagrange used a slightly different method to
find this polynomial. He noticed that it could be written as

y = P1(x) = y0
x− x1

x0 − x1

+ y1
x− x0

x1 − x0

. (3.22)
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Each term on the right side of (1.22) involves a linear factor; hence the sum is a
polynomial of degree≤ 1. The quotient in (1.22) are denoted by

L1,0(x0) =
x− x0

x0 − x1

and L1,1(x) =
x− x0

x1 − x0

. (3.23)

Computation reveals that L1,0(x0) = 1, L1,0(x1) =, L1,1(x0) = 0, and L1,1(x1) = 1 so
that the polynomial P1(x) in (1.22) also passes through the given points:

P1(x0) = y0 + y1(0) = y0 and P1(x1) = y0 + y1 = y1. (3.24)

The terms L1,0(x) and L1,1(x) in (1.23) are called Lagrange coefficient polynomials
based on the nodes x0 and x1. Using this notation, (1.22) can be written in summation
form

P1(x) =
1∑

k=0

ykL1,k(x). (3.25)

Suppose that the ordinates yk are computed with the formula yk = f(xk). If P(x) is
used to approximate f(x) over the interval [x0, x1], we call the process interpolation
If x < x0 (or x1 < x), then using P1(x) is called extrapolation. The next example
illustrates these concepts.

Example 1.6. Consider the graph y = f(x) = cos(x) over [0.0, 1.2].
(a) Use the nodes x0 = 0.0 and x1 = 1.2 to construct a linear interpolating

polynomial P1(x).
(b) Use the nodes x0 = 0.2 and x = 1.0 to construct a linear approximating

polynomial Q1(x).
Using (1.22) with the abscissas x0 = 0.0 and x1 = 1.2 and the ordinates y0 =

cos(0.0) = 1.000000 and y1 = cos(1.2) = 0.362358 produces

P1(x) = 1.000000
x− 1.2

0.0− 1.2
+ 0.362358

x− 0.0

1.2− 0.0

= −0.833333(x− 1.2) + 0.301965(x− 0.0).

When the nodes x0 = 0.2 and x1 = 1.0 with y0 = cos(0.2) = 0.980067 and y1 =
cos(1.0) = 0.540302 are used, the result is

Q1(x) = 0.980067
x− 1.0

0.2− 1.0
+ 0.540302

x− 0.2

1.0− 0.2

= −1.225083(x− 1.0) + 0.675378(x− 0.2).
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Figure 1.11 (a) The linear approximation of y = P1(x) where the
nodes x0 = 0.0 and 1.2 are the end points of the interval [a, b]. (b)
The linear approximation of y = Q1(x) where the nodes x0 = 0.2
and x1 = 1.0 lie inside the interval [a, b].

Figure 1.11 (a) and (b) show the graph of y = cos(x) and compares it with y = P1(x)
and y = Q1(x), respectively. Numerical computations are given in Table 1.6 and reveal
that Q1(x) has less error at the points xk that satisfy 0.1 ≤ xk ≤ 1.1. The largest
tabulated error, f(0.6)−P1(0.6) = 0.144157, is reduced to f(0.6)−Q1(0.6) = 0.065151
by using Q1(x).

The generalization of (1.25) is the construction of a polynomial of a polynomial
PN(x) of degree at most N that passes through the N + 1 points (x0, y0), (x1, y1), . . . ,
(xN , yN) and has the form

PN(x) =
N∑

k=0

ykLN,k(x), (3.26)

where LN,k is the Lagrange coefficient polynomial based on these nodes:

LN,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xN)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN)
. (3.27)

It is understood that the terms (x− xk) and (xk − xk) do not appear on the right side
of equation (1.27). It is approximate to introduce the product notation for (1.27), and
we write

LN,k =

∏N
j=0,j 6=k(x− xj)∏N
j=0,j 6=k(xk − xj)

(3.28)

Here the notation in (1.28) indicates that in the numerator the product of the linear
factors (x − xj) is to be formed, but the factor (x − xk) is to be left out (or skipped).
A similar construction occurs in the denominator.

A straightforward calculation shows that, for each fixed k, the Lagrange coefficient
polynomial LN,k(x) has the property

LN,k(xj) = 1 and LN,k(xj) = 0 when j 6= k. (3.29)

25



Then direct substitution of these values into (1.26) is used to show that the polynomial
curve y = PN(x) goes through (xj, yj):

PN(xj) = y0LN,0(xj) + · · ·+ yjLN,j(xj) + · · ·+ yNLN,N(xj)
= y0(0) + · · ·+ yj(1) + · · ·+ yN(0) = yj.

(3.30)

To show that PN(x) is unique, we invoke the fundamental theorem of algebra, which
states that a polynomial T (x) of degree ≤ N has at most N roots. In order words, if
T (x) is zero at N + 1 distance abscissas, it is identically zero. Suppose that PN(x) is
not unique and that there exists another polynomial QN(x) of degree ≤ N that also
passes through the N+1 points. From the difference polynomial T (x) = PN(x)−QN(x).
Observe that the polynomial T (x) has degree ≤ N and that T (xj)−QN(xj) = yj−yj =
0, for j = 0, 1, . . . , N . Therefore, T (x) = 0 and it follows that QN(x) = PN(x).

Table 1.6 Comparison of f(x) = cos(x) and the Linear Approximations
P1(x) and Q1(x).

xk f(xk) = cos(xk) P1(xk) f(xk)− P1(xk) Q1(xk) f(xk)−Q1(xk)
0.0 1.000000 1.000000 0.000000 1.090008 0.090008
0.1 0.995004 0.946863 0.048141 1.035037 0.040033
0.2 0.980067 0.893726 0.086340 0.980067 0.000000
0.3 0.955336 0.840589 0.114747 0.925096 0.030240
0.4 0.921061 0.787453 0.133608 0.870126 0.050935
0.5 0.877583 0.734316 0.143267 0.815155 0.062428
0.6 0.825336 0.681179 0.144157 0.760184 0.065151
0.7 0.764842 0.628042 0.136800 0.705214 0.059628
0.8 0.696707 0.544905 0.121802 0.650243 0.046463
0.9 0.621610 0.521768 0.099842 0.595273 0.026337
1.0 0.540302 0.468631 0.071671 0.540302 0.000000
1.1 0.453596 0.415495 0.038102 0.485332 0.031736
1.2 0.362358 0.362358 0.000000 0.430361 0.068003

When (1.26) is expanded, the result is similar to (1.22). The Lagrange quadratic
interpolating polynomial through the three points (x0, y0), (x1, y1), and (x2, y2) is

P2(x) = y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ y1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ y2

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
. (3.31)

The Lagrange cubic interpolating polynomial through the four points (x0, y0), (x1,
y1), (x2, y2), and (x3, y3) is

P3(x) = y0
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
+ y1

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)

+y2
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
+ y3

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
. (1.32)
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Figure 1.12 (a) The quadratic approximation polynomial y = P2(x)
based on the nodes x0 = 0.0, x1 = 0.6, and x2 = 1.2. (b) The cubic
approximation polynomial y = P1(x) based on the nodes x0 = 0.0, x1

= 0.4, x2 = 0.8, and x3 = 1.2.

Example 1.7. Consider y = f(x) = cos(x) over [0.0, 1.2].
(a) Use the three nodes x0 = 0.0, x1 = 0.6, and x2 = 1.2 to construct a

quadratic interpolation polynomial P2(x).
(b) Use the four nodes x0 = 0.0, x1 = 0.4, x2 = 0.8, and x3 = 1.2 to

construct a cubic interpolation polynomial P3(x).
Using x0 = 0.0, x1 = 0.6, x2 = 1.2 and y0 = cos(0.0) = 1, y1 = cos(0.6) = 0.825336, and
y2 = cos(1.2) = 0.362358 in equation (1.31) produces

P2(x) = 1.0
(x− 0.6)(x− 1.2)

(0.0− 0.6)(0.0− 1.2)
+ 0.825336

(x− 0.0)(x− 1.2)

(0.6− 0.0)(0.6− 1.2)

+0.362358
(x− 0.0)(x− 0.6)

(1.2− 0.0)(1.2− 0.6)
.

= 1.388889(x− 0.6)(x− 1.2)− 2.292599(x− 00)(x− 1.2)

+0.503275(x− 0.00)(x− 0.6).

Using x0 = 0.0, x1 = 0.4, x2 = 0.8, x3 = 1.2 and y0 = cos(0.0) = 1.0, y1 = cos(0.4) =
0.921061, y2 = cos(0.8) = 0.696707, and y3 = cos(1.2) = 0.362358 in equation (1.32)
produces

P3(x) = 1.000000
(x− 0.4)(x− 0.8)(x− 1.2)

(0.0− 0.4)(0.0− 0.8)(0.0− 1.2)

+0.921061
(x− 0.0)(x− 0.8)(x− 1.2)

(0.4− 0.0)(0.4− 0.8)(0.4− 1.2)

+0.696707
(x− 0.0)(x− 0.4)(x− 1.2)

(0.8− 0.0)(0.8− 0.4)(0.8− 1.2)

+0.362358
(x− 0.0)(x− 0.4)(x− 0.8)

(1.2− 0.0)(1.2− 0.4)(1.2− 0.8)
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= −2.604167(x− 0.4)(x− 0.8)(x− 1.2)

+7.195789(x− 0.0)(x− 0.8)(x− 1.2)

−5.443021(x− 0.0)(x− 0.4)(x− 1.2)

+0.943641(x− 0.0)(x− 0.4)(x− 0.8).

The graphs of y = cos(x) and the polynomial y = P2(x) and y = P3(x) are shown in
Figure 1.12 (a) and (b), respectively.

3.3.1 Error Terms and Error Bounds

It is important to understand the nature of the error term when the Lagrange poly-
nomial is used to approximate a continuous function f(x). It is similar to the error
term for the Taylor polynomial, except that the factor (x− x0)

N+1 is replaced with the
product (x− x0)(x− x1) · · · (x− xN). This expected because interpolation is exact at
each of the N + 1 nodes xk, where we have EN(xk) = f(xk)−PN(xk) = yk − yk = 0 for
k = 0, 1, 2, . . . , N .

Theorem 1.3 (Lagrange Polynomial Approximation). Assume that f ∈ CN+1[a, b]
and that x0, x1, . . . , xN ∈ [a, b] are N + 1 nodes. If x ∈ [a, b], then

f(x) = PN(x) + EN(x), (3.32)

where PN(x) is a polynomial that can be used to approximate f(x):

f(x) ≈ PN(x) =
N∑

k=0

f(xk)LN,k(x). (3.33)

The error term EN(x) has the form

EN(x) =
(x− x0)(x− x1) · · · (x− xN)f (N+1)(c)

(N + 1)!
(3.34)

for some value c = c(x) that lies in the interval [a, b].

Proof. As an example of the general method, we establish (1.34) when N = 1. The
general case is discussed in the exercises. Start by defining the special function g(t) as
follows

g(t) = f(t)− P1(t)− E1(x)
(t− x0)(t− x1)

(x− x0)(x− x1)
. (3.35)

Notice that x, x0 and x1 are constants with respect to the variable t and that g(t)
evaluates to be zero at these three values; that is,

g(x) = f(x)− P1(x)− E1(x)
(x− x0)(x− x1)

(x− x0)(x− x1)
= f(x)− P1(x)− E1(x) = 0,
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g(x0) = f(x0)− P1(x0)− E1(x)
(x0 − x0)(x0 − x1)

(x− x0)(x− x1)
= f(x0)− P1(x0) = 0,

g(x1) = f(x1)− P1(x1)− E1(x)
(x1 − x0)(x1 − x1)

(x− x0)(x− x1)
= f(x1)− P1(x1) = 0.

Suppose that x lies in the open interval (x0, x1). Applying Rolle’s theorem to g(t)
on the interval [x0, x] produces a value d0, with x0 < d0 < x, such that

g′(d0) = 0. (3.36)

A second application of Rolle’s theorem to g(t) on [x, x1] will produce a value d1, with
x < d1 < x1, such that

g′(d1) = 0. (3.37)

Equations (1.36) and (1.37) show that the function g′(t) is zero at t = d0 and t = d1.
A third use of Rolle’s theorem, but this time applied to g′(t) over [d0, d1], produces a
value c for which

g′′(c) = 0. (3.38)

Now go back to (1.35) and compute the derivatives g′(t) and g′′(t):

g′(t) = f ′(t)− P ′
1(t)− E1(x)

(t− x0) + (t− x1)

(x− x0)(x− x1)
. (3.39)

g′′(t) = f ′′(t)− 0− E1(x)
2

(x− x0)(x− x1)
. (3.40)

In (1.40) we have used the fact the P(t) is a polynomial of degree N = 1; hence its
second derivative is P ′′

1 (t) = 0. Evaluation of (1.40) at the point t = c and using (1.38)
yields

0 = f ′′(c)− E1(x)
2

(x− x0)(x− x1)
. (3.41)

Solving (1.41) for E1(x) results in the desired form (1.34) for the remainder:

E1(x) =
(x− x0)(x− x1)f

′′(c)
2!

. (3.42)

and the proof is complete.
]

The next result addresses the special case when the nodes for the Lagrange polyno-
mial are equally spaced xk = x0 + hk, for k = 0, 1, . . . , N , and the polynomial PN(x) is
used only for interpolation inside the interval [x0, xN ].

Theorem 1.4 (Error Bounds for Lagrange Interpolation, Equally Spaced
Nodes). Assume that f(x) is defined on [a, b], which contains equally spaced nodes
xk = x0 + hk. Additionally, assume that f(x) and the derivatives of f(x), up to the
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order N + 1, are continuous and bounded on the special subintervals [x0, x1], [x0, x2],
and [x0, x3], respectively; that is,

|f (N+1)(x)| ≤ MN+1 for x0 ≤ x ≤ xN , (3.43)

for N = 1, 2, 3. The error terms (1.34) corresponding to the cases N = 1, 2, and 3 have
the following useful bounds on their magnitude:

|E1(x)| ≤ h2M2

8
valid for x ∈ [x0, x1], (3.44)

|E2(x)| ≤ h3M3

9
√

3
valid for x ∈ [x0, x2], (3.45)

|E3(x)| ≤ h4M4

24
valid for x ∈ [x0, x3]. (3.46)

Proof. We establish (1.44) and leave the others for the reader. Using the change of
variables x− x0 = t and x− x1 = t− h, the error term E1(x) can be written as

E1(x) = E1(x0 + t) =
(t2 − ht)f ′′(c)

2!
for 0 ≤ t ≤ h. (3.47)

The bound for the derivative for this case is

|f ′′(c)| ≤ M2 for x0 ≤ c ≤ x1. (3.48)

Now determine a bound for the expression (t2 − ht) in the numerator of (1.47); call
this term Φ(t) = t2 − ht. Since Φ′(t) = 2t− h, there is one critical point t = h/2 that
is the solution to Φ′(t) = 0. The extreme values of Φ(t) over [0, h] occur either at an
end point Φ(0) = 0, Φ(h) = 0 or at the critical point Φ(h/2) = −h2/4. Since the latter
value is the largest, we have established the bound

|Φ(t)| = |t2 − ht| ≤ | − h2|
4

=
h2

4
for 0 ≤ t ≤ h. (3.49)

Using (1.48) and (1.49) to estimate the magnitude of the product in the numerator in
(1.47) results in

|E1(x)| = |Φ(t)||f ′′(c)|
2!

≤ h2M2

8
. (3.50)

and formula (1.44) is established.

3.3.2 Comparison of Accuracy and O(hN+1)

The significance of Theorem 1.4 is to understand a simple relationship between the
size of the error terms for linear, quadratic, and cubic interpolation. In each case the
error bound |EN(x)| depends on h in two ways. First, hN+1 is explicitly present so that
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|EN(x)| is proportional hN+1. Second, the values MN+1 generally depend on h and tend
to |f (N+1)(x0)| as h goes to zero. Therefore, as h goes to zero, |EN(x)| converges to
zero with the same rapidity that hN+1 converges to zero. The notation O(hN+1) is used
when discussing this behavior. For example, the error bound (1.44) can be expressed
as

|E1(x)| = O(h2) valid for x ∈ [x0, x1].

The notation O(h2) stands in place of h2M2/8 in relation (1.34) and is meant to convey
the idea that the bound for the error term is approximately a multiple of h2; that is,

|E1(x)| ≤ Ch2 ≈ O(h2).

As a consequence, if the derivatives of f(x) are uniformly bounded on the interval
|h| < 1, then choosing N large will make hN+1 small, and the higher-degree approxi-
mating polynomial will have less error.

Figure 1.13 (a) The error function E2(x) = cos(x)− P2(x). (b)
The error function E3(x) = cos(x)− P3(x).
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Example 1.8. Consider y = f(x) = cos(x) over [0.0, 1.2]. Use formula (1.34) through
(1.36) and determine the error bounds for the Lagrange polynomials P1(x), P2(x), and
P3(x) that were constructed in Examples 1.6 and 1.7.

First, determine the bounds M2,M3, and M4 for the derivatives |f ′′(x)|, |f (3)(x)|,
and |f (4)(x)|, respectively, taken over the interval [0.0, 1.2]:

|f ′′(x)| = | − cos(x)| ≤ | − cos(0.0)| = 1.000000 = M2,

|f (3)(x)| = | − sin(x)| ≤ | sin(1.2)| = 0.932039 = M3,

|f (4)(x)| = | cos(x)| ≤ | cos(0.0)| = 1.000000 = M4.

For P1(x) the spacing of the nodes is h = 1.2, and its error bound is

|E1(x)| ≤ h2M2

8
≤ (1.2)2(1.000000)

8
= 0.180000. (3.51)
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For P2(x) the spacing of the nodes is h = 0.6, and its error bound is

|E2(x)| ≤ h3M3

9
√

3
≤ (0.6)3(0.932039)

9
√

3
= 0.012915. (3.52)

For P3(x) the spacing of the nodes is h = 0.4, and its error bound is

|E3(x)| ≤ h4M4

24
≤ (0.4)4(1.000000)

24
= 0.001067. (3.53)

From Example 1.6 we saw that |E1(0.6)| = cos(0.6) − P(0.6)| = 0.144157, so the
bound 0.180000 in (1.51) is reasonable. The graphs of the error functions E2(x) =
cos(x) − P2(x) and E3(x) = cos(x) − P3(x) are shown in Figure 1.13 (a) and (b),
respectively, and numerical computations are given in Table 1.7. Using values in
the table we find that |E2(1.0)| = | cos(1.0) − P2(1.0)| = 0.008416 and |E3(0.2)| =
| cos(0.2) − P3(0.2)| = 0.000855, which is in reasonable agreement with the bounds
0.012915 and 0.001607 given in (1.52) and (1.53), respectively.

Table 1.7 Comparison of f(x) = cos(x) and the Quadratic and
Polynomial Approximations P2(x) and P3(x).

xk f(xk) = cos(xk) P2(xk) E2(xk) P3(xk) E3(xk)
0.0 1.000000 1.000000 0.000000 1.000000 0.000000
0.1 0.995004 0.990911 0.004093 0.995835 0.000831
0.2 0.980067 0.973813 0.006253 0.980921 0.000855
0.3 0.955336 0.948707 0.006629 0.955812 0.000476
0.4 0.921061 0.915592 0.005469 0.921061 0.000000
0.5 0.877583 0.874468 0.003114 0.877221 0.000361
0.6 0.825336 0.825336 0.000000 0.824847 0.000890
0.7 0.764842 0.768194 0.003352 0.764491 0.000351
0.8 0.696707 0.703044 0.006338 0.696707 0.000000
0.9 0.621610 0.629886 0.008276 0.622048 0.000438
1.0 0.540302 0.548719 0.008410 0.541068 0.000765
1.1 0.453596 0.459542 0.005946 0.544320 0.000724
1.2 0.362358 0.362358 0.000000 0.362358 0.000000

3.3.3 MATLAB

The following program finds the collocation polynomial through a given set of points
by constructing a vector whose entries are the coefficients of the Lagrange interpolay-
ory polynomial. The program uses the commands poly and conv. The poly command
creates a vector whose entries are the coefficients of a polynomial with specified roots.
The conv commands produces a vector whose entries are the coefficients of a polynomial
that is the product of two other polynomials.
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Example 1.9. Find the product of two first-degree polynomials, P (x) and Q(x),
with roots 2 and 3, respectively.

À P=poly(2)
P=

1 -2
À Q=poly(3)
Q=

1 -3
À conv(P,Q)
ans=

1 -5 6
Thus the product of P (x) and Q(x) is x2 − 5x + 6.

Program 4.1 (Lagrange Approximation). To evaluate the Lagrange polynomial
P (x) =

∑N
k=0 ykLN,k(x) based on N + 1 points (xk, yk) for k = 0, 1, . . . , N.

function [C,L]=lagran(X,Y)
%Input -X is a vector that contains a list of abscissas
% -Y is a vector that contains a list of ordinates
%Output -C is a matrix that contains the coefficients of
% the lagrange interpolatory polynomial
% -L is a matrix that contains the Lagrange
% coefficient polynomials
w=length(X);
n=w-1;
L=zeros(w,w);
%From the Lagrange coefficient polynomials
for k=1:n+1

V=1;
for j=1:n+1
if k∼= j
V=conv(V,poly(X(j)))/(X(k)-X(j));
end

end
L(k,:)=V;

end
%Determine the coefficients of the Lagrange interpolating
%polynomial
C=Y*L;
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3.3.4 Exercises for Lagrange Approximation

1. Find Lagrange polynomials that approximate f(x) = x3.
(a) Find the linear interpolation polynomial P1(x) using the nodes x0 = −1

and x1 = 0.
(b) Find the quadratic interpolation polynomial P2(x) using the nodes

x0 = −1, x1 = 0 and x2 = 1.
(c) Find the cubic interpolation polynomial P3(x) using the nodes x0 = −1,

x1 = 0, x2 = 1, and x3 = 2.
(d) Find the linear interpolation polynomial P1(x) using the nodes x0 = 1

and x1 = 2.
(e) Find the quadratic interpolation polynomial P2(x) using the nodes

x0 = 0, x1 = 1, and x2 = 2.
2. Let f(x) = x + 2/x.

(a) Use quadratic Lagrange interpolation based on the nodes x0 = 1, x1 =
2, and x3 = 2.5 to approximate f(1.5) and f(1.2).

(b) Use cubic Lagrange interpolation based on the nodes x0 = 0.5, x1 = 1,
x2 = 2, and x3 = 2.5 to approximate f(1.5) and f(1.2).

3. Let f(x) = 2 sin(πx/6), where x is in radians.
(a) Use quadratic Lagrange Interpolation based on the nodes x0, x1 = 1,

and x2 = 3 to approximate f(2) and f(2.4).
(b) Use cubic Lagrange interpolation based on the nodes x0, x1 = 1, x2 = 3,

and x3 = 5 to approximate f(2) and f(2.4).
4. Let f(x) = 2 sin(πx/6), where x is in radians.

(a) Use quadratic Lagrange Interpolation based on the nodes x0, x1 = 1,
and x2 = 3 to approximate f(4) and f(3.5).

(b) Use cubic Lagrange interpolation based on the nodes x0, x1 = 1, x2 = 3,
and x3 = 5 to approximate f(4) and f(3.5).

5. Write down the error term E3(x) for cubic Lagrange interpolation to f(x),
where interpolation is to be exact at the four nodes x0 = −1, x1 = 0, x2 = 3,
and x3 = 4 and f(x) is given by
(a) f(x) = 4x3 − 3x + 2
(b) f(x) = x4 − 2x3

(c) f(x) = x5 − 5x4

6. Let f(x) = xx.
(a) Find the quadratic Lagrange polynomial P2(x) using the nodes x0 = 1,

x1 = 1.25, and x2 = 1.5.
(b) Use the polynomial form part (a) to estimate the average value of f(x)

over the interval [1, 1.5].
(c) Use expression (1.45) of Theorem 1.4 to obtain a bound on the error

in approximatingf(x) with P2(x).
7. Consider the Lagrange coefficient polynomials L2,k that are used for quadratic

interpolation at the nodes x0, x1, and x2. Define g(x) = L2,0 + L2,1(x)+

34



L2,2(x)− 1.
(a) Show that g is a polynomial of degree ≤ 2.
(b) Show that g(xk) = 0 for k = 0, 1, 2.
(c) Show that g(x) = 0 for all x. Hint. Use the fundamental theorem of

algebra.
8. Let LN,0(x), LN,1(x), . . ., and LN,N(x) be the Lagrange coefficient polynomi-

als based on the N + 1 nodes x0, x1, . . ., and xN . Show that
∑N

K=0 LN,k(x) =
1 for any real number x.

9. Let f(x) be a polynomial of degree ≤ N . Let PN(x) be the Lagrange poly-
nomial of degree ≤ N based on the N + 1 nodes x0, x1, . . . , xn. Show that
f(x) = PN(x) for all x. Hint. Show that the error term EN(x) is identically
zero.

10. Consider the function f(x) = sin(x) on the interval [0, 1]. Use Theorem
1.4 to determine the step size h so that
(a) Linear Lagrange interpolation has an accuracy of 10−6 (i.e. find h such

that |E1(x)| < 5× 10−7).
(b) quadratic Lagrange interpolation has an accuracy of 10−6 (i.e. find h

such that |E2(x)| < 5× 10−7).
(c) cubic Lagrange interpolation has an accuracy of 10−6 (i.e. find h such

that |E3(x)| < 5× 10−7).
11. Start with equation (1.34) and N = 2, and prove inequality (1.45). Let

x1 = x0 + h, x2 = x0 + 2h. Prove that if x0 ≤ x ≤ x2 then

|x− x0||x− x1||x− x2| ≤ 2h3

3× 31/2
.

Hint. Use the substitutions t = x− x1, t + h = x− x0, and t− h = x− x2

and the function v(t) = t3 − th2 on the interval −h ≤ t ≤ h. Set v′(t) = 0
and solve for t in terms of h.

12. Linear interpolation in two dimensions. Consider the polynomial z = P (x,
y) = A + Bx + Cy that passes through the three points (x0, y0, z0), (x1, y1, z1),
and (x2, y2, z2). Then A,B, and C are the solution values for the linear
system of equations

A + Bx0 + Cy0 = z0

A + Bx1 + Cy1 = z1

A + Bx2 + Cy2 = z2.

(a) Find A, B, and C so that z = P (x, y) pass through the points (1, 1, 5), (2,
1, 3), and (1, 2, 9).

(b) Find A,B, and C so that z = P (x, y) pass through the points (1, 1, 2.5),
(2, 1, 0), and (1, 2, 4).

(c) Find A, B, and C so that z = P (x, y) pass through the points (2, 1, 5), (1,
3, 7), and (3, 2, 4).
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(d) Can values A,B, and C be found so that z = P (x, y) passes through
the points (1, 2, 5), (3, 2, 7), and (1, 2, 0)? Why?

13. Use Theorem 1.7, the Generalized Rolle’s Theorem, and the special
function

g(t) = f(t)− PN(t)− EN(x)
(t− x0)(t− x1) · · · (t− xN)

(x− x0)(x− x1) · · · (x− xN)
,

where PN(x) is the Lagrange polynomial of degree N , to prove that the
error term EN(x) = f(x)− PN(x) has the form

EN(x) = (x− x0)(x− x1) · · · (x− xN)
f (N+1)(c)

(N + 1)!
.

Hint. Find g(N+1)(t) and then evaluate it at t = c.

3.3.5 Algorithms and Programs

1. Use Program 1.1 to find the coefficients of the interpolatory polynomials in
problem 2(i) a,b, and c in the Algorithms and programs in Section 1.2.
Plot the graphs of each function and the associated interpolatory polyno-
mial on the same coordinate system.

2. The measured temperature during a 5-hour period in a suburb of Las Ang-
eles on November 8 are given in the following table.
(a) Use Program 1.1 to construct a Lagrange interpolatory polynomial for

the data in the table.
(b) Use Algorithm 1.1 (iii) to estimate the average temperature during the

given 5-hour period.
(c) Graph the data in the table and polynomial from part (a) on the same

coordinate system. Discuss the possible error that can result from using
the polynomial in part (a) to estimate the average temperature.

Time, P. M. Degrees Fahrenheit
1 66
2 66
3 65
4 64
5 63
6 63

3.4 Newton Polynomials

It is sometimes useful to find several approximating polynomial P1(x), P2(x), . . ., PN(x)
and then choose the one that suits our needs. If the Lagrange polynomials are used,
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there is no constructive relationship between PN−1(x) and PN(x). Each polynomial
has to be constructed individually, and the work required to compute the higher-degree
polynomials involves many computations. We take a new approach and construct New-
ton polynomials that have the recursive patter.

P1(x) = a0 + a1(x− x0), (3.54)

P2(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1), (3.55)

P3(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1)
+a2(x− x0)(x− x1)(x− x2).

...

(3.56)

PN(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1)
+a2(x− x0)(x− x1)(x− x2)
+a4(x− x0)(x− x1)(x− x2) + · · ·
+aN(x− x0) · · · (x− xN−1).

(3.57)

Here the polynomial PN(x) is obtained from PN−1(x) using the recursive relationship

PN(x) = PN−1(x) + aN(x− x0)(x− x2) · · · (x− xN−1). (3.58)

The polynomial (1.57) is said to be a Newton polynomial with N centers x0, x1, . . . , xN−1.
It involves sums of products of linear factors up to

aN(x− x0)(x− x1)(x− x2) · · · (x− xN−1),

so PN(x) will simply to be an ordinary polynomial of degree ≤ N .

Example 4.10. Given the centers x = 1, x1 = 3, x2 − 4, and x3 = 4.5 and the coef-
ficients a0 = 5, a1 = −2, a2 = 0.5, a3 = −0.1, and a4 = 0.003, find P1(x), P2(x), P3(x),
and P4(x) and evaluate Pk(2.5) for k = 1, 2, 3, 4.

Using formulas (1.54) through (1.57), we have

P1(x) = 5− 2(x− 1),
P2(x) = 5− 2(x− 1) + 0.5(x− 1)(x− 3),
P3(x) = P2(x)− 0.1(x− 1)(x− 3)(x− 4),
P4(x) = P3(x) + 0.003(x− 1)(x− 3)(x− 4)(x− 4.5).

Evaluating the polynomials at x = 2.5 results in

P1(2.5) = 5− 2(1.5),
P2(2.5) = P1(2.5) + 0.5(1.5)(−0.5) = 1.625,
P3(2.5) = P2(2.5)− 0.1(1.5)(−0.5)(−1.5) = 1.5125,
P4(2.5) = P3(2.5) + 0.003(1.5)(−0.5)(−1.5)(−2.0) = 1.50575.
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3.4.1 Nested Multiplication

If N is fixed and the polynomial PN(x) is evaluated many times, then nested multi-
plication should be used. The process is similar to nested multiplication for ordinary
polynomials, except that the centers xk must be subtracted from the independent vari-
able x. The nested multiplication form for P3(x) is

P3(x) = ((a3(x− x2) + a2)(x− x1) + a1)(x− x0) + a0. (3.59)

To evaluate P3(x) for a given value of x, start with the innermost grouping and form
successively the quantities

S3 = a3,
S2 = S3(x− x2) + a2,
S1 = S2(x− x1) + a1,
S0 = S1(x− x0) + a0.

(3.60)

The quantity S0 is now P3(x).

Example 1.11. Compute P3(2.5) in Example 1.10 using nested multiplication.
Using (1.59), we write

P3(x) = ((−0.1(x− 4) + 0.5)(x− 3)− 2)(x− 1) + 5.

The values in (1.60) are

S3 = −0.1,
S2 = −0.1(2.5− 4) + 0.5 = 0.65,
S1 = 0.65(2.5− 3)− 2 = −2.325,
S0 = −2.325(2.5− 1) + 5 = 1.5125.

Therefore, P3(2.5) = 1.5125.

3.4.2 Polynomial Approximation, nodes, and Centers

Suppose that we want to find the coefficients ak for all the polynomials P1(x), . . .,
PN(x) that approximate a given function f(x). Then Pk(x) will be based on the cen-
ters x0, x1, . . . , xk and have the nodes x0, x1, . . . , xk+1. For the polynomial P(x) the
coefficients a0 and a1 have a familiar meaning. In this case

P1(x0) = f(x0) and P1(x1) = f(x1). (3.61)

Using (1.54) and (1.61) to solve for a0, we find that

f(x0) = P1(x0) = a0 + a1(x0 − x0) = a0. (3.62)

Hence a0 = f(x0). Next, using (1.54), (1.61) and (1.62), we have

f(x1) = P1(x1) = a0 + a1(x1 − x0) = f(x0) + a1(x1 − x0),
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which can be solved for a1, and we get

a1 =
f(x1)− f(x0)

x1 − x0

. (3.63)

Hence a1 is the slope of the secant line passing through the two points (x0, f(x0)) and
(x1, f(x1)).

The coefficients a0 and a1 are the same for both P1(x) and P2(x). Evaluating (1.55)
at the node x2, we find that

f(x2) = P2(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1). (3.64)

The values for a0 and a1 in (1.62) and (1.63) can be used in (1.64) to obtain

a2 =
f(x2)− a0 − a1(x2 − x0)

(x2 − x0)(x2 − x1)

=

(
f(x2)− f(x0)

x2 − x1

− f(x1)− f(x0)

x1 − x0

)
/(x2 − x1).

For computational purposes we prefer to write this last quantity as

a2 =

(
f(x2)− f(x1)

x2 − x1

− f(x1)− f(x0)

x1 − x0

)
/(x2 − x0). (3.65)

The two formulas for a2 can be shown to be equivalent by writing the quotients over
the common denominator (x2−x1)(x2−x0)(x1−x0). The details are left for the reader.
The numerator in (1.65) is the difference between the first-order divided differences. In
order to proceed, we need to introduce the idea of divided differences.

Definition 1.1 (Divided Differences). The divided differences for a function f(x)
are defined as follows:

f [xk] = f(xk),

f [xk−1, xk] = f [xk]−f [xk−1]
xk−xk−1

,

f [xk−2, xk−1, xk] = f [xk−1,xk]−f [xk−2,xk−1]
xk−xk−2

,

f [xk−3, xk−2, xk−1, xk] = f [xk−2,xk−1,xk]−f [xk−3,xk−2,xk−1]
xk−xk−3

.

(3.66)

The recursive rule for constructing higher-order divided differences is

f [xk−j, xk−j+1, . . . , xk] =
f [xk−j+1, . . . , xk]− f [xk−j, . . . , xk−1]

xk − xk−j

(3.67)

and is used to construct the divided differences in Table 4.8.

Table 1.8 Divided-difference Table for y = f(x)
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xk f [xk] f [ , ] f [ , , ] f [ , , , ] f [ , , , , ]
x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
x4 f [x4] f [x3, x4] f [x2, x3, x4] f [x1, x2, x3, x4] f [x0, x1, x2, x3, x4]

The coefficients ak of PN(x) depend on the values f(xj), for j = 0, 1, . . . , k. The
next theorem shows that ak can be computed using divided differences:

ak = f [x0, x1, . . . , xk]. (3.68)

Theorem 1.5 (Newton Polynomial). Suppose that x0, x1, . . . , xN are N +1 distinct
numbers in [a, b]. There exists a unique polynomial PN(x) of degree at most N with
the property that

f(xj) = PN(xj) for j = 0, 1, . . . , N.

The Newton form of this polynomial is

PN(x) = a0 + a1(x− x0) + · · ·+ aN(x− x0)(x− x1) · · · (x− xN−1), (3.69)

where ak = f [x0, x1, . . . , xk], for k = 0, 1, . . . , N .
Remark. If {(xj, yj)}N

j=0 is a set of points whose abscissas are distinct, the values
f(xj) = yj can be used to construct the unique polynomial of degree ≤ N that passes
through the N + 1 points.

Corollary 1.2 (Newton Approximation). Assume that PN(x) is the Newton poly-
nomial given in Theorem 1.5 and is used to approximate the function f(x), that is,

f(x) = PN(x) + EN(x). (3.70)

If f ∈ CN+1[a, b], then for each x ∈ [a, b] there corresponds a number c = c(x) in (a, b),
so that the error term has the form

EN(x) =
(x− x0)(x− x1) · · · (x− xN)f (N+1)(c)

(N + 1)!
. (3.71)

Remark. The error term EN(x) is the same as the one for Lagrange interpolation, which
was introduced in equation (1.34) of Section 1.3.

It is of interest to start with a known function f(x) that is a polynomial of degree
N and compute its divided-difference table. In this case we know that f (N+1)(x) = 0
for all x, and calculation will reveal that the (N + 1)st divided difference is zero. This
will happen because the divided difference (1.67) is proportional to a numerical approx-
imation for the jth derivative.

Example 1.12. Let f(x) = x2 − 4x. Construct the divided-difference table based
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on the nodes x0 = 1, x1 = 2, . . . , x5 = 6, and find the Newton polynomial P3(x) based
on x0, x1, x2, and x3.

See Table 1.9.
The coefficients a0 = −3, a1 = 3, a2 = 6, and a3 = 1 of P3(x) appear on the diagonal

of the divided-difference table. The centers x0 = 1, x1 = 2, and x2 = 3 are the values
in the first column. Using formula (1.56), we write

P3(x) = −3 + 3(x− 1) + 6(x− 1)(x− 2) + (x− 1)(x− 2)(x− 3).

Example 1.13. Construct a divided-difference table for f(x) = cos(x) based on the
five points (k, cos(x)), for k = 0, 1, 2, 3, 4. Use it to find the coefficients ak and the four
Newton interpolating polynomials Pk(x), for k = 1, 2, 3, 4.

Table 1.9

xk f [xk]
First

divided
difference

Second
divided

difference

Third
divided

difference

Fourth
divided

difference

Fifth
divided

difference
x0 = 1 3
x1 = 2 0 3
x2 = 3 15 15 6
x3 = 4 48 33 9 1
x4 = 5 105 57 12 1 0
x5 = 6 192 87 15 1 0 0

Table 1.10 Divided-difference Table Used for Constructing the Newton
Polynomials Pk(x) in Example 1.13

xk f [xk] f [ , ] f [ , , ] f [ , , , ] f [ , , , , ]
x0 = 0.0 1.0000000
x1 = 1.0 0.5403023 0.4596977
x2 = 2.0 0.4161468 0.9564491 0.2483757
x3 = 3.0 0.9899925 0.5738457 0.1913017 0.1465592
x4 = 4.0 0.6536436 0.3363499 0.4550973 0.0879318 0.0146568

For simplicity we round off the values to seven decimal places, which are displayed in
Table 1.10. The nodes x0, x1, x2, x3 and the diagonal elements a0, a1, a2, a3, a4 in Table
1.10 are used in formula (1.69), and we write down the first four Newton polynomials:

P1(x) = 1.0000000− 0.4596977(x− 0.0),

P2(x) = 1.0000000− 0.4596977(x− 0.0)− 0.2483757(x− 0.0)(x− 1.0),

P3(x) = 1.0000000− 0.4596977(x− 0.0)− 0.2483757(x− 0.0)(x− 1.0)

+0.1465592(x− 0.0)(x− 1.0)(x− 2.0),
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P4(x) = 1.0000000− 0.4596977(x− 0.0)− 0.2483757(x− 0.0)(x− 1.0)

+0.1465592(x− 0.0)(x− 1.0)(x− 2.0)

−0.0146568(x− 0.0)(x− 1.0)(x− 2.0)(x− 3.0).

The following sample sample calculation shows how to find the coefficient a2.

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

=
0.5403023− 1.0000000

1.0− 0.0
= −0.4596977,

f [x1, x2] =
f [x2]− f [x1]

x2 − x1

=
0.4161468− 0.5403023

2.0− 1.0
= −0.9564491,

a2 = f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=
0.9564491 + 0.4596977

2.0− 0.0
= −0.2483757.

The graphs of y = cos(x) and y = P1(x), y = P2(x), and y = P3(x) are shown in Figure
1.14 (a), (b) (c), respectively.

For computational purposes the divided differences in Table 1.8 need to be stored
in an array which is chosen to be D(k, j). Thus (1.68) becomes

D(k, j) = f [xk−j, xk−j+1, . . . , xk] for j ≤ k. (3.72)

Relation (1.67) is used to obtain the formula to recursively compute the entries in the
array:

D(k, j) =
D(k, j − 1)−D(k − 1, j − 1)

xk − xk−j

. (3.73)
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Figure 1.14(a)

y=cos(x) 

y=P
1
(x) 

Figure 1.14 (a) Graphs of y = cos(x) and the linear Newton
polynomial y = P1(x) based on the nodes x0.0 and x1 = 1.0.
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Figure 1.14(b)

y=P
2
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Figure 1.14 (b) Graphs of y = cos(x) and the quadratic Newton
polynomial y = P2(x) based on the nodes x0.0, x1 = 1.0 and x2 = 2.0.
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Figure 1.14 (c) Graphs of y = cos(x) and the cubic Newton
polynomial y = P3(x) based on the nodes x0.0, x1 = 1.0, x2 =
2.0 and x3 = 3.0.

Notice that the value ak in (1.68) is the diagonal element ak = D(k, k). The algo-
rithm for computing the divided difference and evaluating PN(x) is now given. We
remark that Problem 2 in Algorithms and Programs investigates how to modify the
algorithm so that the values [ak] are computed using a one-dimensional array.

Program 1.2 (Newton Interpolation Polynomial). To construct and
evaluate the Newton polynomial of degree ≤ N that passes through (xk, yk)
= (xk, f(xk)) for k = 0, 1, . . . , N :

P (x) = d0,0 + d1,1(x− x0) + d2,2(x− x0)(x− x1)
+ · · ·+ dN,N(x− x0)(x− x1) · · · (x− xN−1),

where

dk,0 = yk and dk,j =
dk,j−1−dk−1,j−1

xk−xk−j
.
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function [C,D]=newpoly(X,Y)
%Input -X is a vector that contains a list of abscissas
% -Y is a vector that contain list of ordinates
%Output -C is a vector that contains the coefficients
% of the Newton intepolatory polynomial
% -D is the divided-difference table
n=length(X);
D=zeros(n,n);
D(:,1)=y’;
% Use formula (20) to form the divided-difference table
for j=2:n

for k=j:n
D(k,j)=(D(k,j-1)-D(k-1,j-1)/(X(k)-X(k-j+1));

end
end
%Determine the coefficients of the Newton interpolating
%polynomial
C=D(n,n);
for k=(n-1):-1:1

C=conv(C,poly(X(k)));
m=length(C);
C(m)=C(m)+D(k,k);

end

3.4.3 Exercises for Newton Polynomials

In Exercises 1 through 4, use the centers x0, x1, x2, and x3 and coefficients a0, a1, a2, a3,
and a4 to find the Newton polynomials P1(x), P2(x), P3(x), and P4(x), and evaluate
them at the value x = c. Hint. Use equations (1) through (4) and the techniques of
Example 4.9.
1. a0 = 4 a1 = −1 a2 = 0.4 a3 = 0.01 a4 = −0.002

x0 = 1 x1 = 3 x2 = 4 x3 = 4.5 c = 2.5
2. a0 = 5 a1 = −2 a2 = 0.5 a3 = −0.1 a4 = 0.003

x0 = 0 x1 = 1 x2 = 2 x3 = 3 c = 2.5
3. a0 = 7 a1 = 3 a2 = 0.1 a3 = 0.05 a4 = −0.04

x0 = −1 x1 = 0 x2 = 1 x3 = 4 c = 3
4. a0 = −2 a1 = 4 a2 = −0.04 a3 = 0.06 a4 = 0.005

x0 = −3 x1 = −1 x2 = 1 x3 = 4 c = 2
In Exercises 5 through 8:

(a) Compute the divided-difference table for the tabulated function.
(b) Write down the Newton polynomials P1(x), P2(x), P3(x), and P4(x).
(c) Evaluate the Newton polynomials in part (b) at the given values of x.
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(d) Compute the values in part (c) with the actual function value f(x).

5. f(x) = x1/2, x = 4.5, 7.5 6. f(x) = 3.6/x, x = 2.5, 3.5
k xk f(xk)
0 4.0 2.00000
1 5.0 2.23607
2 6.0 2.44949
3 7.0 2.64475
4 8.0 2.82843

k xk f(xk)
0 1.0 3.60
1 2.0 1.80
2 3.0 1.2
3 4.0 0.90
4 5.0 0.72

7. f(x) = 3 sin2(πx/6), x = 1.5, 3.5 8. f(x) = e−x, x = 0.5, 1.5
k xk f(xk)
0 0.0 0.00
1 1.0 0.75
2 2.0 2.25
3 3.0 3.00
4 4.0 2.25

k xk f(xk)
0 0.0 1.00000
1 1.0 0.36788
2 2.0 0.13534
3 3.0 0.04979
4 4.0 0.01832

9. Consider the M + 1 points (x0, y0), . . . , (xM , yM).
(a) If the (N + 1)st divided differences are zero, then show that the (N + 2)nd up

to the Mth divided differences are zero.
(b) If the (N + 1)st divided differences are zero, then show that there exists a

polynomial PN(x) of degree N such that

PN(xk) = yk for k = 0, 1, . . . ,M.

In Exercises 10 through 12, use the result of Exercise 9 to find the polynomial PN(x)
that goes through the M + 1 points (N < M).

10. 11. 12.

xk yk

0 2
1 2
2 4
3 4
4 2
5 2

xk yk

1 8
2 17
3 24
4 29
5 32
6 33

xk yk

0 5
1 5
2 3
3 5
4 17
5 45
6 95

13. Use Corollary 1.2 to find a bound on the maximum error (|E2(x)|) on the in-
terval [0, π], when the Newton interpolatory polynomial P2(x) is used to approximate
f(x) = cos(πx) at the centers x0, x1 = π/2, and x2 = π.
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3.4.4 Algorithms and Programs

1. Use Program 1.2 and repeat Problem 2 in Programes and Algorithms from Section
1.3.
2. In Program 1.2 the matrix D is used to store the divided-difference table.

(a) Verify that the following modification of Program 1.2 is an equivalent
way to compute the Newton interpolatory polynomial.

for k=0:N
A(k)=Y(k);

end
for j=1:N

for k=N:-1:j
A(k)=(A(k)-A(k-1))/(X(k)-X(k-j));

end
end
(b) Repeat Problem 1 using this modification of Program 1.2.

3.5 Chebyshev Polynomials (Optional)

We now turn our attention to polynomial interpolation for f(x) over [−1, 1] based on
the nodes −1 ≤ x0 < x1 < · · · < xN ≤ 1. Both the Lagrange and Newton polynomials
satisfy

f(x) = PN(x) + EN(x),

where

EN(x) = Q(x)
f (N+1)(c)

(N + 1)!
(3.74)

and Q(x) is the polynomial of degree N + 1:

Q(x) = (x− x0)(x− x1) · · · (x− xN). (3.75)

Using the relationship

|EN(x)| ≤ |Q(x)|
max
−1≤x≤1

{|f (N+1)(x)|}
(N + 1)!

.

our task is to follow Chebyshev’s derivation on how to select the set of nodes {xk}N
k=0

that minimizes max
−1≤x≤1

{|Q(x)|}. This leads us to a discussion of Chebyshev polynomials

and some of their properties. To begin, the first eight Chebyshev polynomials are listed
in Table 4.11.

Table 4.11 Chebyshev Polynomials T0(x) through T7(x)
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T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1
T7(x) = 64x7 − 112x5 + 56x3 − 7x

3.5.1 Properties of Chebyshev Polynomials

Property 1. Recurrence relation
Chebyshev polynomials can be generated in the following way. Set T0(x) = 1 and
T1(x) = x and use the recurrence relation

Tk(x) = 2xTk−1(x)− Tk−2(x) for k = 2, 3, . . . , (3.76)

Property 2. Leading Coefficient
The coefficient of xN in TN(x) is 2N−1 when N ≥ 1.
Property 3. Symmetry
When N = 2M , T2M(x) is an even function, that is,

T2M(−x) = T2M(x). (3.77)

When N = 2M + 1, T2M+1(x) is an odd function, that is,

T2M+1(−x) = T2M+1(x). (3.78)

Property 4.Trigonometric Representation on [−1, 1]

TN(x) = cos(N arccos(x)) for − 1 ≤ x ≤ 1. (3.79)

Property 5. Distinct Zeros in [−1, 1]
TN(x) has N distinct zeros that lie in the interval [−1, 1] (see Figure 4.15):

xk = cos(
(2k + 1)π

2N
) for k = 0, 1, . . . , N − 1. (3.80)

These values are called the Chebyshev abscissas (nodes).
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Figure 1.15 Graphs of the Chebyshev polynomials T0(x), T1(x),
. . . , T4(x) over [−1, 1].

Property 6. Extreme values

|TN(x)| ≤ 1 for − 1 ≤ x ≤ 1. (3.81)

Property 1 is often used as the definition for higher-order Chebyshev polynomials.
Let us show that T3(x) = 2xT2(x) − T1(x). Using the expressions for T1(x) and T2(x)
in table 4.11, we obtain

2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x = T3(x).

Property 2 is proved by observing that the recurrence relation doubles the leading
coefficient of TN−1(x) to get the leading coefficient of TN(x).

Property 3 is established by showing that T2M(x) involves only even powers of x
and T2M+1(x) involves only odd powers of x. The details are left for the reader.

The proof of property 4 uses the trigonometric identity

cos(kθ) = cos(2θ) cos((k − 2)θ)− sin(2θ) sin((k − 2)θ).

Substitute cos(2θ) = cos2(θ)− 1 and sin(2θ) = 2 sin(θ) cos(θ) and get

cos(kθ) = 2 cos(θ)(cos(θ) cos((k − 2)θ)− sin(θ) sin((k − 2)θ))− cos((k − 2)θ),

which is simplified as

cos(kθ) = 2 cos(θ) cos((k − 1)θ)− cos((k − 2)θ).

Finally, substitute θ = arccos(x) and obtain

2x cos((k − 1) arccos(x))− cos((k − 2) arccos(x)) = cos(k arccos(x))
for − 1 ≤ x ≤ 1.

(3.82)
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The first two Chebyshev polynomials are T0(x) = cos arccos(x)) = 1 and T1(x) =
cos(1 arccos(x)) = x. Now assume that Tk(x) = cos(k arccos(x)) for k = 2, 3, . . . , N−1.
Formula (1.76) is used with (1.82) to establish the general case:

TN(x) = 2xTN−1(x)− TN−2(x)

= 2x cos((N − 1) arccos(x))− cos((N − 2) arccos(x))

= cos(x)(N arccos(x)) for− 1 ≤ x ≤ 1.

Properties 5 and 6 are consequences of property 4.

3.5.2 Minimax

The Russian mathematician Chebyshev studied how to minimize the upper bound for
|EN(x)|. One upper bound can be formed by taking the product of the maximum value
of |Q(x)| over all x in [−1, 1] and the maximum value |f (N+1)(x)/(N + 1)!| over all x in
[−1, 1]. To minimize the factor max{|Q(x)|}, Chebyshev discovered that x0, x1, . . . , xN ,
should be chosen so that Q(x) = (1/2N)TN+1(x).

Theorem 1.6. Assume that N is fixed. Among all possible choices for Q(x) in equa-
tion (1.75), and thus among all possible choices for the distinct nodes {xk}N

k=0 in [−1, 1],
the polynomial T (x) = TN+1(x)/2N is the unique choice that has the property

max
−1≤x≤1

{|T (x)|} ≤ max
−1≤x≤1

{|Q(x)|}.

Moreover,

max
−1≤x≤1

{|T (x)|} =
1

2N
. (3.83)

Proof. The proof can be found in reference [29].
The consequence of this result can be stated by saying that, for Lagrange interpo-

lation on [−1, 1], the minimum value of the error bound

(max{|Q(x)|})(max{|f (N+1)(x)/(N + 1)!|})

is achieved when the nodes {xk} are the Chebyshev abscissas of TN+1(x). As an il-
lustration, we look at the Lagrange coefficient polynomials that are used in forming
P3(x). First we use equally spaced nodes and then the Chebyshev nodes. Recall that
the Lagrange polynomial of degree N = 3 has the form

P3(x) = f(x0)L3,0(x) + f(x1)L3,1(x) + f(x2)L3,2(x) + f(x3)L3,3(x). (3.84)
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3.5.3 Equally Spaced Nodes

If f(x) is approximated by a polynomial of degree at most N = 3 on [−1, 1], the equally
spaced nodes x0 = −l, x1 = −1/3, and x3 = 1 are easy to use for calculations. Sub-
stitution of these values into formula (1.81) of Section 1.3 and simplifying will produce
the coefficient polynomials L3,k(x) in Table 1.12.

Table 1.12 Lagrange Coefficient Polynomials Used to Form P3(x)
Based on Equally Spaced Nodes xk = −1 + 2k/3

L3,0(x) = −0.06250000 + 0.06250000x + 0.56250000x2 − 0.56250000x3

L3,1(x) = −0.56250000 + 1.68750000x− 0.56250000x2 + 1.68750000x3

L3,2(x) = −0.56250000 + 1.68750000x− 0.56250000x2 − 1.68750000x3

L3,3(x) = −0.06250000− 0.06250000x + 0.56250000x2 + 0.56250000x3

3.5.4 Chebyshev Nodes

When f(x) is to be approximated by a polynomial of degree at most N = 3, using the
Chebyshev nodes x0 = cos(7π/8), x1 = cos(5π/8), x2 = cos(3π/8), and x3 = cos(π/8),
the coefficient polynomials are tedious to find (but this can be done by a computer).
The results after simplification are shown in Table 1.13.

Table 1.13 Coefficient Polynomials Used to Form P3(x) Based
on the Chebyshev Nodes xk = cos((7− 2k)π/8)

C0(x) = 0.10355339 + 0.11208538x + 0.70710678x2 − 0.76536686x3

C1(x) = 0.60355339− 1.57716102x− 0.70710678x2 + 1.84775906x3

C2(x) = 0.60355339 + 1.57716102x− 0.70710678x2 − 1.84775906x3

C3(x) = 0.10355339− 0.11208538x + 0.70710678x2 + 0.76536686x3

Example 1.14. Compare the Lagrange polynomials of degree N = 3 for f(x) = ex that
are obtained by using the coefficient polynomials in Tables 1.12 and 1.13, respectively.

Using equally spaced nodes, we get the polynomial

P (x) = 0.99519577 + 0.99904923x + 0.54788486x2 + 0.17615196x3.

This is obtained by finding the function values

f(x0) = e(−1) = 0.36787944, f(x1) = e(−1/3) = 0.17615196x3.

f(x2) = e(1/3) = 1.39561243, f(x3) = e(1) = 2.71828183,

and using the coefficient polynomials L3,k(x) in Table 1.12, and forming the linear
combination

P (x) = 0.36787944L3,0(x) + 0.71653131L3,1(x) + 1.39561243L3,2(x)

+2.71828183L3,3(x).
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Similarly, when the Chebyshev nodes are used, we obtain

V (x) = 0.99461532 + 0.99893323x + 0.54290072x2 + 0.17517569x3.

Notice that the coefficients are different from those of P (x). This is a consequence of
using different nodes and function values:

f(x0) = e−0.92387953 = 0.39697597,

f(x1) = e−0.38268343 = 0.68202877,

f(x2) = e0.38268343 = 1.46621380,

f(x3) = e0.92387953 = 2.51904417.

Then the alternative set of coefficient polynomials Ck(x) in Table 4.13 is used to form
the linear combination

V (x) = 0.39697597C0(x) + 0.68202877C1(x) + 1.46621380C2(x) + 2.51904417C3(x).
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y=ex−V(x) 

Figure 1.16 (a) Th error function y = ex − P (x) for Lagrange
approximation over [−1, 1]. (b) The error function y = ex − V (x)
for Lagrange approximation over [−1, 1].

For a comparison of the accuracy of P (x) and V (x), the error functions are graphed
in Figure 1.16 (a) and (b), respectively. The maximum error ex − P (x) occurs at
x = 0.75490129, and

|ex − P (x)| ≤ 0.00998481 for − 1 ≤ x ≤ 1.

The maximum error |ex − V (x)| occurs at x = 1, and we get

|ex − V (x)| ≤ 0.00665687 for − 1 ≤ x ≤ 1.

Notice that the maximum error in V (x) is about two-thirds the maximum error in P (x).
Also, the error ins spread out more evenly over the interval.
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3.5.5 Runge Phenomenon

We now look deeper to see the advantage of using the Chebyshev interpolation nodes.
Consider Lagrange interpolating to f(x) over the interval [−1, 1] based on equally spaced
nodes. Does the error EN(x) = f(x)−PN(x) tend to zero as N increases? For functions
like sin(x) or ex, where all the derivatives are bounded by the same constant M , the
answer is yes. In general, the answer to this question is no, and it is easy to find
functions for which the sequence {PN(x)} does not converge. If f(x) = 1/(1 + 12x2),
the maximum of the error term EN(x) grows when N → ∞. This nonconvergence
is called the Runge Phenomenon (see Reference[90]. pp.275-278). The Lagrange
polynomial of degree 10 based on 11 equally spaced nodes for this function is shown in
Figure 1.17(a). Wild oscillations occur near the end of the interval. If the number of
nodes is increased, then the oscillations become larger. This problem occurs because
the nodes are equally spaced!
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y=f(x) 

Figure 1.17 (a) The polynomial approximation to y = 1/(1 + 12x2)
based on 11 equally spaced nodes over [−1, 1].
If the Chebyshev nodes are used to construct an interpolating polynomial of degree

10 to f(x) = 1/(1+12x2), the error is much smaller, as seen in Figure 1.17(b). Under the
condition that Chebyshev nodes be used, the error EN(x) will go to zero as N → ∞.
In general, if f(x) and f ′(x) are continuous on [−1, 1], then it can be proved that
Chebyshev interpolation will produce a sequence of polynomials {PN(x)} that converges
uniformly to f(x) over [−1, 1].
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Figure 1.17(b) The polynomial approximation to y = 1/(1 + 12x2)
based on 11 Chebyshev nodes over [−1, 1].

3.5.6 Transforming the Interval

Sometimes it is necessary to take a problem stated on an interval [a, b] and reformulate
the problem on the interval [c, d] where the solution is known. If the approximation
P (x) to f(x) is to be obtained on the interval [a, b], then we change the variable so that
the problem is reformulated on [−1, 1]:

x =

(
b− a

2

)
t +

a + b

2
or t = 2

x− a

b− a
− 1. (3.85)

where a ≤ x ≤ b and −1 ≤ t ≤ 1.
The required Chebyshev nodes of TN+1(t) on [−1, 1] are

tk = cos
(
(2N + 1− 2k)

π

2N + 2

)
for k = 0, 1, . . . , N (3.86)

and the interpolating nodes on [a, b] are obtained by using (1.85):

xk = tk
b− a

2
+

a + b

2
for k = 0, 1, . . . , N. (3.87)

Theorem 1.7 (Lagrange-Chebyshev Approximation Polynomial). Assume that
PN(x) is the Lagrange polynomial that is based on the Chebyshev nodes given in (1.87).
If f ∈ CN+1[a, b], then

|f(x)− PN(x)| ≤ 2(b− a)N+1

4N+1(N + 1)!
max
a≤x≤b

{|f (N+1)(x)|}. (3.88)

Example 4.15. For f(x) = sin(x) on [0, π/4], find the Chebyshev nodes and the error
bound (1.88) for the Lagrange polynomial P5(x).

53



Formulas (1.85) and (1.86) are used to find the nodes;

xk = cos

(
(11− 2k)π

12

)
π

8
+

π

8
for k = 0, 1, . . . , 5.

Using the bound |f (6)(x)| ≤ | − sin(π/4)| = 2−1/2 = M in (1.88), we get

|f(x)− PN(x)| ≤ (
π

8
)6(

2

6!
)2−1/2 ≤ 0.00000720.

3.5.7 Orthogonal Property

In Example 1.14. the Chebyshev nodes were used to find the Lagrange interpolating
polynomial. In general, this implies that the Chebyshev polynomial of degree N can
be obtained by Lagrange interpolation based on the N + 1 nodes that are the N + 1
zeros of TN+1(x). However, a direct approach to finding the approximation polynomial
is to express PN(x) as a linear combination of the polynomials Tk(x), which were given
in Table 1.11 Therefore, the Chebyshev interpolating polynomial can be written in the
form

PN(x) =
N∑

k=0

ckTk(x) = c0T0(x) + c1T1(x) + · · ·+ cNTN(x). (3.89)

The coefficients {ck} in (1.89) are easy to find. The technical proof requires the use
of the following orthogonality properties. Let

xk = cos

(
π

2k + 1

2N + 2

)
for k = 0, 1, · · · , N ; (3.90)

N∑

k=0

Ti(xk)Tj(xk) = 0 when i 6= j, (3.91)

N∑

k=0

Ti(xk)Tj(xk) =
N + 1

2
when i = j 6= 0, (3.92)

N∑

k=0

T0(xk)T0(xk) = N + 1. (3.93)

Property 4 and the identities (1.91) and (1.93) can be used to prove the following
theorem.

Theorem 1.8 (Chebyshev Approximation). The Chebyshev approximation poly-
nomial PN(x) of degree ≤ N for over [−1, 1] can be written as a sum of {Tj(x)}:

f(x) ≈ PN(x) =
N∑

j=1

cjTj(x). (3.94)
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The coefficients {cj} are computed with the formulas

c0 =
1

N + 1

N∑

k=0

f(xk)T0(xk) =
1

N + 1

N∑

k=0

f(xk) (3.95)

and

cj =
2

N + 1

N∑

k=0

f(xk)Tj(xk)

=
2

N + 1

N∑

k=0

f(xk) cos

(
jπ(2k + 1)

2N + 2

)
for j = 1, 2, · · · , N. (3.96)

Example 1.16. Find the Chebyshev polynomial P3(x) that approximates the function
f(x) = ex over [−1, 1].

The coefficients are calculated using formulas (1.95) and (1.96), and the nodes xk =
cos(π(2k + 1)/8) for =0,1,2,3.

c0 =
1

4

3∑

k=0

exkT0(xk) =
1

4

3∑

k=0

exk = 1.26606568,

c1 =
1

2

3∑

k=0

exkT1(xk) =
1

2

3∑

k=0

exkxk = 1.13031500,

c2 =
1

2

3∑

k=0

exkT2(xk) =
1

2

3∑

k=0

exk cos

(
2π

2k + 1

8

)
= 0.27145036,

c3 =
1

2

3∑

k=0

exkT3(xk) =
1

2

3∑

k=0

exk cos

(
3π

2k + 1

8

)
= 0.04379392.

Therefore, the Chebyshev polynomial P3(x) for ex is

P3(x) = 1.26606568T0(x) + 1.13031500T1(x)
+0.27145036T2(x) + 0.04379392T3(x).

(3.97)

If the Chebyshev polynomial (1.97) is expanded in powers of x, the result is

P3(x) = 0.99461532 + 0.99893324x + 0.54290072x2 + 0.17517568x3.

which is the same as the polynomial V (x) in Example 1.14. If the goal is to find the
Chebyshev polynomial, formulas (1.95) and (1.96) are preferred.
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3.5.8 MATLAB

The following program uses the eval command instead of the feval command used in
earlier programs. The eval command interprets a MATLAB text string as an expression
or statement. For example, the following commands will quickly evaluate cosine at the
values x = k/10 for k = 0, 1, 5:
À x=0:.1:.5;
À eval(’cos(x)’)
ans=

1.0000 0.9950 0.9801 0.9553 0.9211 0.8776

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Che-
byshev interpolating polynomial of degree N over the interval [−1, 1], where

P (x) =
∑N

j=0 cjTj(x)
is based on the nodes

xk = cos
(

(2k+1)π
2N+2

)
.

function [C, X, Y]=cheby(fun,n,a,b)
%Input -fun is the string function to be approximated
% -N is the degree of the Chebyshev interpolating
% polynomial
% -a is the left end point
% -b is the right end point
% Output -C is the coefficient list for the polynomial
% -X contains the abscissas
% -Y contains the ordinates
if nargin ==2,a =-1;b=1; end
d=pi/(2*n+2);
C=zeros(1,n+1);
for k=1:n+1

X(k)=cos((2*k-1)*d);
end
X=(b-a)*X/2+(a+b)/2;
x=X;
Y=eval(fun);
for k=1:n+1

z=(2*k-1)*d;
for j=1:n+1

C(j)=C(j)+Y(k)*cos((j-1)*z);
end

end
C=2*C/(n+1);
C(1)=C(1)/2;
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3.5.9 Exercises for Chebyshev Polynomials (Optional)

1. Use property l and
(a) construct T4(x) from T3(x) and T2(x).
(b) construct T5(x) from T4(x) and T3(x).

2. Use property l and
(a) construct T6(x) from T5(x) and T4(x).
(b) construct T7(x) from T6(x) and T5(x).

3. Use mathematical induction to prove property 2.
4. Use mathematical induction to prove property 3.
5. Find the maximum and minimum values of T2(x).
6. Find the maximum and minimum values of T3(x).

Hint. T ′
3(1/2) = 0 and T ′

4(−2−1/2) = 0.
7. Find the maximum and minimum values of T4(x).

Hint. T ′
4(0) = 0 and T ′

4(2
−1/2) = 0, and T ′

4(−2−1/2) = 0.
8. Let f(x) = sin(x) on [−1, 1]

(a) Use the coefficient polynomials in Table 1.13 to obtain the Lagrange-
Chebyshev polynomial approximation.

(b) Find the error bound for | sin(x)− P3(x)|.
9. Let f(x) = ln(x + 2) on [−1, 1].

(a) Use the coefficient polynomials in Table 1.13 to obtain the Lagrange-
Chebyshev polynomial approximation P3(x).

(b) Find the error bound for | ln(x + 2)− P3(x)|.
10. The Lagrange polynomial of degree N = 2 has the form

f(x) = f(x0)L2,0(x) + f(x1)L2,1(x) + f(x2)L2,2(x).

If the Chebyshev nodes x0 = cos(5π/6), x1 = 0, and x2 = cos(π/6) are
used, show that the coefficient polynomials are

L2,0(x) = − x√
3

+
2x2

3
,

L2,1(x) = 1− 4x2

3
,

L2,2(x) =
x√
3

+
2x2

3
.

11. Let f(x) = cos(x) on [−1, 1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-

Chebyshev polynomial approximation P2(x).
(b) Find the error bound for | cos(x)− P2(x)|.

12. Let f(x) = ex on [−1, 1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-

Chebyshev polynomial approximation.
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(b) Find the error bound for |ex − P2(x)|.
In Exercises 13 through 15, compare the Taylor polynomial and the Lagrange - Cheby-
shev approximates to f(x) on [−1, 1]. Find their error bounds.
13. f(x) = sin(x) and N = 7; the Lagrange-Chebyshev polynomial is

sin(x) ≈ 0.99999998x− 0.16666599x2 + 0.00832995x5 − 0.00019297x7.

14. f(x) = cos(x) and N = 7; the Lagrange-Chebyshev polynomial is

cos(x) ≈ 1− 0.49999734x2 + 0.04164535x4 − 0.00134608x6.

15. f(x) = ex and N = 7; the Lagrange-Chebyshev polynomial is

ex ≈ 0.99999980 + 0.99999998x + 0.50000634x2

+0.16666737X3 + 0.04163504x4 + 0.00832984x5

+0.00143925x6 + 0.00020399x7.

16. Prove equation (1.91)
17. Prove equation (1.92)

3.5.10 Algorithms and Programs

In Problems l through 6, use Program 1.3 to compute the coefficients for the Chebyshev
polynomial approximation PN(x) to f(x) over [−1, 1], when (a) N = 4, (b) N = 5,
(c) N = 6, and (d) N = 7. In each case, plot f(x) and PN(x) on the same coordinate
system.

1. f(x) = ex 2. f(x) = sin(x)
3. f(x) = cos(x) 4. f(x) = ln(x + 2)
5. f(x) = (x + 2)1/2 6. f(x) = (x + 2)(x+2)

7. Use Program 1.3 (N = 5) to obtain an approximation for
∫ 1
0 cos(x2)dx.

3.6 Padé Approximations

In this section we introduce the notion of rational approximations. The function f(x)
will be approximated over a small portion of its domain. For example, if f(x) = cos(x),
it is sufficient to have a formula to generate approximations on the interval [0, π/2].
Then trigonometric identities can be used to compute cos(x) for any value x that lies
outside [0, π/2].

A rational approximation to f(x) on [a, b] is the quotient of two polynomials PN(x)
and QM(x) of degrees N and M , respectively. We use the notation RN,M(x) to denote
this quotient:

RN,M(x) =
PN(x)

QM(x)
for a ≤ x ≤ b (3.98)
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Our goal is to make the maximum error as small as possible. For a given amount
of computational effort, one can usually construct a rational approximation that has a
smaller overall error on [a, b] than a polynomial approximation. Our development is an
introduction and will be limited to Padé approximations.

The method of Padé requires that f(x) and its and its derivative be continuous
at x = 0. There are two reasons for the arbitrary choice of x = 0. First, it makes the
manipulations simpler. Second, a change of variable can be used to shift the calculations
over to an interval that contains zero. The polynomials used in (1.98) are

PN(x) = p0 + p1x + p2x
2 + · · ·+ pNxN (3.99)

and
QM(x) = 1 + q1x + q2x

2 + · · ·+ qMxM . (3.100)

The polynomials in (1.99) and (1.100) are constructed so that f(x) and RN,M(x)
agree at x = 0 and their derivatives up to N +M agree at x = 0. In the case Q0(x) = 1,
the approximation is just the Maclaurin expansion for f(x). For a fixed value of N +M
the error is smallest when PN(x) and QM(x) have the same degree or when PN(x) has
degree one higher then QM(x).

Notice that the constant coefficient of QM is q0 = 1. This is permissible, because
it cannot be 0 and RN,M(x) is not changed when both PN(x) and QM(x) are divided
by the same constant. Hence the rational function RN,M(x) has N + M + 1 unknown
coefficients. Assume that f(x) is analytic and has the Maclaurin expansion

f(x) = a0 + a1x + a2x
2 + · · ·+ akx

k + · · · , (3.101)

and form the difference f(x)QM(x)− PN(x) = Z(x):


∞∑

j=0

ajx
j







M∑

j=0

qjx
j


−

N∑

j=0

pjx
j = −

∞∑

j=N+M+1

cjx
j. (3.102)

The lower index in the summation on the right side of (1.102) is chosen because the
first N + M derivatives of f(x) and RN,M(x) are to agree at x = 0.

When the left side of (1.102) is multiplied out and the coefficients of the powers of
xj are set equal to zero for k = 0, 1, . . . , N + M , the result is a system of N + M + 1
linear equations:

a0 − p0 = 0
q1a0 + a1 − p1 = 0

q2a0 + q1a1 + a2 − p2 = 0
q3a0 + q2a1 + q1a2 + a3 − p3 = 0

qMaN−M + qM−1aN−M+1 + · · ·+ aN − pN = 0

(3.103)

and
qMaN−M+1 + qM−1aN−M+2 + · · ·+ q1aN + aN+1 = 0

qMaN−M+2 + qM−1aN−M+3 + · · ·+ q1aN+1 + aN+2 = 0
...

...
qMaN + qM−1aN+1 + · · ·+ q1aN+M−1 + aN+M = 0

(3.104)
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Notice that in each equation the sum of the subscripts on the factors of each product
is the same, and this sum increases consecutively from 0 to N + M . The M equations
in (1.104) involve only the unknowns q1, q2, . . . , qM and must be solved first. Then the
equations in (1.103) are used successively to find p0, p1, . . . , pN .

Example 1.17. Establish the pade approximation

cos(x) ≈ R4,4(x) =
15, 120− 6900x2 + 313x4

15, 120 + 660x2 + 13x4
. (3.105)

See Figure 1.18 for the graphs of cos(x) and R4,4(x) over [−5, 5].
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Figure 1.18 The graph of y = cos(x) and its Pade approximation R4,4(x).

If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine
unknowns. Instead, notice that both cos(x) and R4,4(x) are even functions and involve
powers of x2. We can simplify the computations if we start with f(x) = cos(x1/2):

f(x) = 1− 1

2
x +

1

24
x2 − 1

720
x3 +

1

40320
x4 · · · (3.106)

In this case, equation (1.102) becomes
(

1− 1

2
x +

1

24
x2 − 1

720
x3 +

1

40, 320
x4 · · ·

)
(1 + q1x + q2x

2)− p0 − p1x− p2x
2

= 0 + 0x + 0x2 + 0x3 + 0x4 + c5x
5 + c6x

6 + · · · .
When the coefficients of the first five powers of x are compared, we get the following
system of linear equations:

1− p0 = 0
1
2

+ q1 − p1 = 0
1
24
− 1

2
q1 + q2 − p2 = 0

1
720

+ 1
24

q1 − 1
2
q2 = 0

1
40,320

− 1
720

q1 + 1
24

q2 = 0

(3.107)
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The last two equations in (1.107) must be solved first. They can be rewritten in a form
that is easy to solve:

q1 − 12q2 =
1

30
and q1 + 30q2 =

−1

56

First find q2 by adding the equations; then find q1.

q2 =
1

18

(
1

30
− 1

56

)
=

13

15, 120
, (3.108)

q1 =
1

30
+

156

15, 120
=

11

152
.

Now the first three equations of (1.107) are used. It is obvious that p0 = 1, and we
can use q1 and q2 in (1.108) to solve for p1 and p2:

p1 = −1

2
+

11

252
= −115

252
, (3.109)

p2 =
1

24
− 11

504
+

13

15, 120
=

313

15, 120
.

Now use the coefficients in (1.108) in (1.109) to form the rational approximation to
f(x):

f(x) ≈ 1− 115x/252 + 313x2/15, 120

1 + 11x/252 + 13x2/15, 120
. (3.110)

Since cos(x) = f(x2), we can substitute x2 for x in equation (1.110) and the result is
the formula for R4,4(x) in (1.105).

3.6.1 Continued Fraction Form

The Padé approximation R4,4(x) in Example 1.17 requires a minimum of 12 arithmetic
operations to perform an evaluation. It is possible to reduce this number to seven by
the use of continued fractions. This is accomplished by starting with (1.105) and finding
the quotient and its polynomial remainder.

R4,4(x) =
15, 120/313− (6900/313)x2 + x4

15, 120/13 + (660/13)x2 + 4

=
313

13
−

(
196, 280

169

) (
12, 600/823 + x2

15, 120/13 + (600/13)x2 + x4

)
.

The process is carried out once more using the term in the previous remainder. The
result is

R4,4(x) =
313

13
− 296, 280/169

15,120/13+(660/13)x2+x4

12,600/823+x2
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=
313

13
− 296, 280/169

379,380
10,699

+ x2 + 420,078,960/677,329
12,600/823+x2

.

The fractions are converted to decimal form for computational purposes and we obtain

R4,4(x) = 24.07692308− 1753.13609467

35.45938873 + x2 + 620.19922877/(15.30984207 + x2)
(3.111)

To evaluate (1.111), first compute and store x2, then proceed from the bottom right term
in the denominator and tally the operations: division, addition, addition, division, and
subtraction. Hence it takes a total of seven arithmetic operations to evaluate R4,4(x)
in continued fraction form in (1.111).

We can compare R4,4(x) with the Taylor polynomial P6(x) of degree N = 6, which
requires seven arithmetic operations to evaluate when it is written in the nested form

P6(x) = 1 + x2
(
−1

2
+ x2

(
1

24
− 1

720
x2

))
(3.112)

= 1 + x2(−0.5 + x2(0.0416666667− 0.0013888889x2)).

The graphs of ER(x) = cos(x) − R4,4(x) and EP (x) = cos(x) − P6(x) over [−1, 1] are
shown in Figure 1.19(a) and (b), respectively. The largest errors occur at the end points
and are ER(1) = −0.0000003599 and EP (1) = −0.0000245281, respectively. The mag-
nitude of the largest error for R4,4(x) is about 1.467% of the error for P6(x). The Padé
approximation outperforms the Taylor approximation better on smaller intervals, and
over [−0.1, 0.1] we find that ER(0, 1) = −0.0000000004 and EP (0, 1) = 0.0000000966,
so the magnitude of the error for R4,4(x) is about 0.384% of the magnitude of the error
for P6(x).
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Figure 1.19 (a) Graph of the error ER(x) = cos(x)−R4,4(x)
for the Pade approximation R4,4(x).
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Figure 1.19 (b) Graph of the error EP (x) = cos(x)− P6(x)
for the Taylor approximation P6(x).

3.6.2 Exercises for Padé Approximations

1. Establish the Padé approximation:

ex ≈ R1,1(x) =
2 + x

2− x
.

2. (a) Find the Padé approximation R1,1(x) for f(x) = ln(1 + x)/x. Hint.
Start with the Maclaurin expansion:

f(x) = 1− x

2
+

x2

3
· · · .

(b) Use the result in part (a) to establish the approximation

ln(1 + x) ≈ R2,1(x) =
6x + x2

6 + 4x
.

3. (a) Find R1,1(x) for f(x) = tan(x1/2)/x1/2. Hint. Start with the Maclaurin
expansion:

f(x) = 1 +
x

3
+

1x2

15
+ · · · .

(b) Use the result in part (a) to establish the approximation

tan(x) ≈ R3,2(x) =
15x− x3

15− 6x2
.

4. (a) Find R1,1(x) for f(x) = arctan(x1/2)/x1/2. Hint. Start with the
Maclaurin expansion:

f(x) = 1− x

3
+

x2

5
· · · .
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(b) Use the result in part (a) to establish the approximation

arctan(x) ≈ R3,2(x) =
15x + 4x3

15 + 9x2
.

(c) Express the rational rational function R3,2(x) in part (b) in continued
fraction form.

5. (a) Establish the padé approximation:

ex ≈ R2,2(x) =
12 + 6x + x2

12− 6x + x2
.

(b) Express the rational function R2,2(x) in part (a) in continued fraction
form.

6. (a) Find the Padé approximation R2,2(x) for f(x) = ln(1 + x)/x. Hint.
Start with the Maclaurin expansion:

f(x) = 1− x

2
+

x2

3
− x3

4
+

x4

5
· · · .

(b) Use the result in part (a) to establish

ln(1 + x) ≈ R3,2(x) =
30x + 21x2 + x3

30 + 36x + 9x2
.

(c) Express the rational function R3,2(x) in part (b) in continued fraction
form.

7. (a) Find R2,2(x) for f(x) = tan(x1/2)/x1/2. Hint. Start with the Maclaurin
expansion:

f(x) = 1 +
x

3
+

2x2

15
+

17x3

315
+

62x4

2835
+ · · · .

(b) Use the result in part (a) to establish

tan(x) ≈ R5,4(x) =
945x− 105x3 + x5

945− 420x2 + 15x4
.

(c) Express the rational function R5,4(x) in part (b) in continued fraction
form.

8. (a) Find R2,2(x) for f(x) = arctan(x1/2)/x1/2. Hint. Start with the
Maclaurin expansion:

f(x) = 1− x

3
+

x2

5
− x3

7
+

x4

9
· · · .

(b) Use the result in part (a) to establish

arctan(x) ≈ R5,4(x) =
945x + 735x3 + 64x5

945 + 1050x2 + 225x4
.
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(c) Express the rational function R5,4(x) in part (b) in continued fraction
form.

9. Establish the Padé approximation:

ex ≈ R3,3(x) =
120 + 60x + 12x2 + x3

120− 60x + 12x2 + x3
.

10. Establish the Padé approximation:

ex ≈ R4,4(x) =
1680 + 840x + 180x2 + 20x3 + x4

1680− 840x + 180x2 − 20x3 + x4
.

3.6.3 Algorithms and Programs

1. Compare the following approximations to f(x) = ex.

Taylor T6(x) = 1 + x +
x2

2
+

x3

6
+

x4

24

Padé R2,2(x) =
12 + 6x + x2

12− 6x + x2

(a) Plot f(x), T6(x), and R2,2(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximated

with T6(x) and R2,2(x), respectively, over the interval [−1, 1].
2. Compare the following approximations to f(x) = ln(1 + x).

Taylor T5(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5

Padé R3,2(x) =
30x + 21x2 + x3

30 + 36x + 9x2

(a) Plot f(x), T5(x), and R3,2(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximated

with T5(x) and R3,2(x) ,respectively, over the interval [−1, 1].
3. Compare the following approximations to f(x) = tan(x).

Taylor T9(x) = x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835

Padé R5,4(x) =
945x− 105x3 + x5

945− 420x2 + 15x4

(a) Plot f(x), T9(x), and R5,4(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximated

with T9(x) and R5,4(x), respectively, over the interval [−1, 1].
4. Compare the following padé approximations to f(x) = sin(x) over the
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interval [−1.2, 1.2].

R5,4(x) =
166, 320x− 22, 260x3 + 551x5

15(11, 088 + 364x2 + 5x4

R7,6(x) =
11, 511, 339, 840x− 1, 640, 635, 920x2 + 52, 785, 432x5 − 479, 249x7

7(1, 644, 477, 120 + 39, 702, 960x2 + 453, 960x4 + 2, 623x6)

(a) Plot f(x), R5,4(x), and R7,6(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f(x) is approximated

with R5,4(x) and R7,6(x), respectively, over the interval [−1.2, 1.2].
5. (a) Use equations (1.103) and (1.104) to derive R6,6(x) and R8,8(x) for

f(x) = cos(x) over the interval [−1.2, 1.2].
(b) Plot f(x), R6,6(x), and R8,8(x) on the same coordinate system.
(c) Determine the maximum error that occurs when f(x) is approximated

with R6,6(x) and R8,8(x), respectively, over the interval [−1.2, 1.2].
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