Appendix:
An Introduction to MATLAB

This appendix introduces the reader to programming with the software pack-
age MATLAB. It is assumed that the reader has had previous experience
with a high-level programming language and is familiar with the techniques of
writing loops,branching using logical relation, calling subroutines, and editing.
These techniques are directly applicable in the windows-type environment of
MATLAB.

MATLAB is a mathematical software package based on matrices. The
package consists of an extensive library of numerical routines, easily accessed
two-and three-dimensional graphics, and a high-level programming format.The
ability to quickly implement and modify programs makes MATLAB an appro-
priate format for exploring and executing the algorithms in this textbook.

The reader should work through the following tutorial introduction to
MATLAB (MATLAB commands are in typewriter type). The examples illus-
trate typical input and output from the MATLAB Command Window. To find
additional information about commands, options, and examples, the reader is
urged to make use of the on-line help facility and the Reference and User’s
guides that accompany the software.

Arithmetic Operations

+ Addition

— Subtraction

* Multiplication
/ Division

" Power

pi, e, i Constants
Ex. > (243*pi)/2
ans—=
5.7124

Built-in Functions
Below is a short list of some of the functions available in MATLAB. The follow-
ing example illustrates how functions and arithmetic operations are combined.
Descriptions of other available functions may be found by using the on-line
help facility.

abs(z) cos(z) exp(t) log(t) logl0(z) cosh(z)

sin(f) tan(f) sqrt(s) floor(s) acos(f) tanh(f)
Ex. >3*cos(sqrt(4.7))

ans=

-1.6869



The default format shows approximately five significant decimal figures, Enter-
ing the command format long will display approximately 15 significant decimal
figures.
Ex. >format long
3*cos(sqrt(4.7))
ans=
-1.68686892236893

Assignment Statements
Variable names are assigned to expressions by using an equal sign.
Ex. >a=3-floor(exp(2.9))
a—=
-15

A semicolon placed at the end of an expression suppresses the computer echo
(output).
Ex. >b=sin(a); Note:b was not displayed.
>2%b"2
ans=
0.8457

Defining Functions
in MATLAB the user can define a function by constructing an M-file (a file
ending in .m) in the M-file Editor/Debugger. Once defined, a user-defined
function is called in the same manner as built-in functions.
Ex. Place the function fun(z) = 1+ 2 — z?/4 in the M-file fun.m. In the
Editor/Debugger one would enter the following:

function y=fun(x)

y=14x-x."2/4;
We will explain the use of ”.”” shortly. Different letters could be used for the
variables and a different name could be used for the function, but the same
format would have to be followed. Once this function has been saved as an
M-file named fun.m, it can be called in the MATLAB Command Window in
the same manner as any function.

>cos(fun(3))

ans=

-0.1782

A useful and efficient way to evaluate functions is to use the feval command.
This command requires that the function be called as a string.
Ex. >feval('fun’,4)

ans=

1

Matrices



All variables in MATLAB are treated as matrices or arrays. Matrices can en-

tered directly:

Ex. >A=[123;456;7 8 9]

A=

1 2
4 5
7 8

Semicolons are used to separate the rows of a matrix. Note that, the entries

of the matrix must be separated by a single space. Alternatively, a matrix can
be entered row by row.

3
6
9

Ex. >A=[123
456
789]

A=
123
456
789

Matrices can be generated using built-in functions.

Ex. >Z=zeros(3,5); creates a 3 X 5 matrix of zeros
>X=ones(3,5); creates a 3 X 5 matrix of ones
>Y=0:0.5:2 creates the displayed 1 x 5 matrix
Y=

0 0.5000 1.0000 1.5000 2.0000
>cos(Y) creates a 1 x 5 matrix by taking the
cosine of each entry of Y
ans=
1.0000 0.8776 0.5403 0.0707 -0.4161

The components of matrices can be manipulated in several ways,

Ex. >A=(2,3) select a submatrix of A
ans=
6
>A([1 3],[1 3)) another way to select a submatrix of A
ans=
13
79

>A(2,2)=tan(7,8); assign a new value to an entry of A

Additional commands for matrices can be found by using the on-line help
facility or consulting the documentation accompanying the software.

Matrix Operations

+ Addition

— Subtraction

* Multiplication
" Power



! Conjugate Transpose

Ex. >B=[1 2;3 4];

>C=B’ C is the transpose of B
C=
13
24
>3*(B*C)"3 3(BC)?
ans=

13080 29568
29568 66840

Array Operations

One of the most useful characteristics of the MATLAB package is the number
of functions that can operate on the individual elements of a matrix. This
was demonstrated earlier when the cosine of the entries of a 1 x 5 matrix was
taken. The matrix operations of addition, subtraction, and scalar multiplica-
tion already operate elementwise, but the matrix operations of multiplication,
division, and power do not. These three operations can be made to operate
elementwise by preceding them with a period: .*, ./, and 7. Tt is important
to understand how and when to use these operations. Array operations are
crucial to the efficient construction and execution of MATLAB programs and

graphics.
Ex. >A=[1 2;3 4];
>A"2 produces the matrix product AA
ans=
710
15 22
>A"2 squares each entry of A
ans=
14
916
>cos(A./2) divides each entry of A by 2, then takes
the cosine of each entry
ans=

0.8776 0.5403
0.0707 -0.4161

Graphics

MATLAB can produce two- and three-dimensional plots of curves and sur-
faces. Options and additional features of graphics in MATLAB can be found
in the on-line and documentation accompanying the software.

The plot command is used to generate graphs of two-dimensional functions.
The following example will create the plot of the graphs y = cos(z) and y =
cos?(x) over the interval [0, 7].

Ex. >x=0:0.1:pi;



>y=cos(x);

>z=cos(x)."2;

>plot(x,y,x,z,'0")

The first line specifies the domain with a step size of 0.1. The next two lines
define the two functions. Note that the first three lines all end a semicolon.
The semicolon is necessary to suppress the echoing of the matrix x, y, and
z on the command screen. The fourth line contains the plot command that
produces the graph. The first two terms in the plot command, x, and y, plot
the function y = cos(x). The third and fourth terms, x and z, produce the plot
of y = cos?(x). The last term, ’o’, results in o’s being plotted at each point
(wk, 2x) where 25, = cos?(zy,).

The graphics command fplot is a useful alternative to the plot command.
The form of the command is fplot ('name’[a,b],n). This command creates a
plot of the function name.m by sampling n points in the interval [a,b]. The
default number for n is 25.

Ex. >fplot('tanh’,[-2,2]) plot y = tanh(z) over [—2, 2]

The plot and plot3 commands are used to graph parametric curves in two- and
three-dimensional space, respectively. These commands are particularly useful
in the visualization of the solutions of differential equations in two and three
dimensions

Ex. The plot of the ellipse ¢(t) = (2cos(t),3sin(t)), where 0 < ¢ < 27, is
produced with the following commands;

>t=0:0.2:2%*pi;

>plot(2*cos(t),3*sin(t))

Ex. The plot of the curve c(t) = (2cos(x),t? 1/t), where 0.1 < t < 4, is
produced with the following commands;

>t=0.1:0.1:4%pi;

>plot3(2*cos(t),t.",1./t)

Three-dimensional surface plots are obtained by specifying a rectangular sub-
set of the domain of a function with the meshgrid command and then using
the mesh or surf commands to obtain a graph. These graphs are helpful in
visualizing the solutions of partial differential equations;

Ex. >x=-pi:0.1;pi;

>y=X;

> [x,y]=meshgrid(x,y);

>z=sin(cos(x+y));

>mesh(z)

Loops and Conditionals
Relational Operators

== Equal to

~= Not equal to

< less than

> Greater than

<= less than or equal to



>= Greater than or equal to
Logical Operators
- Not (Complement)
& And (True if both operands are true)
| Or (True if either or both operands are true)
Boolean Values
1 true
0 False
The for, if, and while statements in MATLAB operate a manner analogous to
their counterparts in other programming languages. These statements have
the following basic form:
for (loop-variable = loop-expression)
executable-statements
end
if (logical-expression)
executable-statements
end
while (while-expression)
executable-statements
end
while (while-expression)
executable-statements
end
The following example shows how to use nested loops to generate a matrix.
The following file was saved as a M-file named nest.m. Typing nest in the
MATLAB Command Window produces the matrix A. Note, when viewed from
the upper-left cornner, that the entries of the matrix A are the entries in
Pascal’s triangle.
Ex. for i=1:5
A(i,1)=1;A(1,i)=1,
end
for i=2:5
for j=2:5
A(i5)=A(i,j-1)+A(i-1,));
end
end
A
The break command is used to exit from a loop.
Ex. for k=1:100
x=sqrt(k);
if ((k>10)&(x-floor(x)==0))
break
end
end



k
The disp command can be used to display text or a matrix.
Ex. n=10;
k=0;
while k<=n
x=k/3;
disp([x x"2 x"3])
k—=k+1;
end

Programs
An efficient way to construct programs is to use user-defined functions. These
functions are saved as M-files. These programs allow the user to specify the
input and output parameters. They are easily called as subroutines in other
programs. The following example allows one to visualize the effects of moding
out Pascal’s triangle with a prime number. Type the following function in the
MatLAB Editor/Debugger and then save it as an M-file named pasc.m.
Ex. function P=pasc(n,m)

%Input - n is the number of rows

% - m is the prime number

%Output - p is Pascal’s triangle

for j=1:n
P(,1)=1;P(1,))=1;
end
for k=2:n
for j=2:n
P(k,j)=rem(P(kj-1),m)-+rem(P(k-1,j),m);
end
end
Now in the MATLAB Command Window enter P=pasc(5,3) to see the first
five rows of Pascal’s triangle mod 3. Or try P=pasc(175,3); (note the semi-
colon) and then type spy(P) (generates a sparse matrix for large values of n).

Conclusion

At this point the reader should be able to create and modify programs based
on the algorithms in this textbook. Additional information on commands and
information regarding the use of MATLAB on your particular platform can be
found in the on-line help facility or in the documentation accompanying the
software.



