Anhui University

Semester 1, 2004-2005 Final Examination (Paper A)

Model Answer and Referee Criterion for Numerical Analysis

In question 1-6, please choose the correct answer (only one is correct)

- 1. (5 marks) Word "MATLAB" comes form
 - (A) Mathematics Laboratory
 - (B) Matrix Laboratory
 - (C) Mathematica Laboratory
 - (D) Maple Laboratory

Answer. (B)

2. (5 marks) The matrix

$$\left(\begin{array}{ccc}
4 & -1 & 1 \\
4 & -8 & 1 \\
-2 & 1 & 5
\end{array}\right)$$

is

- (A) a strictly diagonally dominant matrix;
- (B) not a strictly diagonally dominant matrix;
- (C) a singular matrix;
- (D) a matrix whose determinant is equal to zero.

Answer. (A)

3. (5 marks) The computational complexity of Gaussian elimination for solving linear equation systems AX = B (A is $N \times N$ matrix) is

- (A) O(N), (B) $O(N^2)$, (C) $O(N^3)$, (D) $O(N^4)$.

Answer. (C)

4. (5 marks) Assume that f(x) is defined on [a, b], which contains equally spaced nodes $x_k = x_0 + hk$. Additionally, assume that f''(x) is continuous on [a,b]. If we use Lagrange interpolation polynomial

$$P_1(x) = \sum_{k=0}^{1} f(x_k) L_{1,k}(x)$$

1

to approximate f(x), then the error $E_1(x)$ is

- (A) O(1) (B) O(h) (C) $O(h^2)$ (D) $O(h^3)$

Answer. (C)

5. (5 marks) Degree 4 Chebyshev Polynomial $T_4(x)$ is

- (A) an odd function,
- (B) an even function
- (C) not odd or even function,
- (D) both odd and even function

Answer. (B)

- 6. (5 marks) Padé Approximation is
 - (A) A rational polynomial approximation
 - (B) A polynomial approximation
 - (C) A triangular polynomial approximation
 - (D) A linear function approximation

Answer. (A)

7. (15 marks) Use the false position method to find the root of $x \sin(x) - 1 = 0$ that is located in the interval [0, 2] (the function $\sin(x)$ is evaluated in radians). Solution. Starting with $a_0 = 0$ and $b_0 = 2$, we have f(0) = -1 and f(2) = 0.8186, so a root lies in the interval [0, 2].

 \cdots 2 marks

Using formula

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)},$$

 \cdots 7 marks

we get

$$c_0 = 2 - \frac{0.8186(2-0)}{0.8186 - (-1)} = 1.0997$$
 and $f(c_0) = -0.0200$

The function changes sign on the interval $[c_0, b_0] = [1.0997, 2]$, so we squeeze from the left and set $a_1 = c_0$ and $b_1 = b_0$. The formula produces the next approximation:

$$c_1 = 2 - \frac{0.8186(2 - 1.0997)}{0.8186 - (-0.0200)} = 1.1212$$

and

$$f(c_1) = 0.0098.$$

 \cdots 11 marks

Next f(x) changes sign on $[a_1, c_1] = [1.0997, 1.1212]$, and the next decision is to squeefrom the right and set $a_2 = a_1$ and $b_2 = c_1$. Hence we get $c_2 = 1.1141$ and

$$f(c_2) = 0.0000$$

 \cdots 15 marks

8. (15 marks) In the following linear equation systems

$$4x - y + z = 7$$
$$4x - 8y + z = -21$$
$$-2x + y - 5z = 15$$

start with $P_0 = (1, 2, 2)$, and use Gauss-Seidel iteration to find P_k for k = 1, 2. Will Gauss-Seidel iteration converge to the solution?

Solution. The Gauss-Seidel iteration is

$$x_{k+1} = \frac{7 + y_k - z_k}{4}$$
$$y_{k+1} = \frac{21 + 4x_{k+1} + z_k}{8}$$
$$z_{k+1} = \frac{15 + 2x_{k+1} - y_{k+1}}{5}$$

 \cdots 7 marks

Substitute $y_0 = 2$ and $z_0 = 2$ into the first equation of the systems above and obtain

$$x_1 = \frac{7+2-2}{4} = 1.75.$$

Then substitute $x_1 = 1.75$ and $z_0 = 2$ into the second equation and get

$$y_1 = \frac{21 + 4(1.75) + 2}{8} = 3.75.$$

Finally, substitute $x_1 = 1.75$ and $y_1 = 3.75$ into the third equation to get

$$z_1 = \frac{15 + 2(1.75) - 3.75}{5} = 2.95.$$

Using the same reason, we get

$$x_2 = 1.95$$
, $y_2 = 3.96$, and $z_2 = 2.98$

 \cdots 13 marks

Since the exact solution of the linear equation systems is $\mathbf{P} = (2, 4, 3)$, Gauss-Seidel iteration \mathbf{P}_k will converge to the solution.

 \cdots 15 marks

9. (15 marks) Consider $y = f(x) = \cos(x)$ over [0.0, 1.2]. Use the three nodes $x_0 = 0.0, x_1 = 0.6$, and $x_2 = 1.2$ to construct a quadratic interpolation polynomial $P_2(x)$.

Solution. The quadratic Lagrange interpolation polynomial for f(x) is

$$P_2(x) = \sum_{k=0}^{2} y_k L_{2,k}(x)$$

$$=y_0\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}+y_1\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}+y_2\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

· · · 7 marks

Using $x_0 = 0.0, x_1 = 0.6, x_2 = 1.2$ and $y_0 = \cos(0.0) = 1, y_1 = \cos(0.6) = 0.8253$, and $y_2 = \cos(1.2) = 0.3623$ in the formula above produces

$$P_2(x) = 1.0 \frac{(x - 0.6)(x - 1.2)}{(0.0 - 0.6)(0.0 - 1.2)} + 0.8253 \frac{(x - 0.0)(x - 1.2)}{(0.6 - 0.0)(0.6 - 1.2)}$$

$$+0.3623 \frac{(x-0.0)(x-0.6)}{(1.2-0.0)(1.2-0.6)}$$

$$= 1.3888(x-0.6)(x-1.2) - 2.2925(x-0.0)(x-1.2)$$

$$+0.5032(x-0.0)(x-0.6).$$

 \cdots 15 marks

10. (15 marks) Consider $f(x) = 2 + \sin(2\sqrt{x})$. Use the composite Simpson rule with 11 sample points to compute an approximation to the integral of f(x) taken over [1, 6].

Solution. To generate 11 sample points, we must use M=5 and h=(6-1)/10=1/2. Using formula

$$S(f,h) = \frac{h}{3}(f(a) + f(b)) + \frac{2h}{3} \sum_{k=1}^{M-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M} f(x_{2k-1}),$$

 \cdots 7 marks

the computation is

$$S(f, \frac{1}{2}) = \frac{1}{6}(f(1) + f(6)) + \frac{1}{3}(f(2) + f(3) + f(4) + f(5))$$

$$+ \frac{2}{3}(f(\frac{3}{2}) + f(\frac{5}{2}) + f(\frac{7}{2} + f(\frac{9}{2}) + (\frac{11}{2}))$$

$$= \frac{1}{6}(2.9092 + 1.0173)$$

$$+ \frac{1}{3}(2.3080 + 1.6830 + 1.2431 + 1.0287)$$

$$+ \frac{2}{3}(2.6381 + 1.9793) + 1.4353 + 1.1083 + 1.0002)$$

$$= \frac{1}{6}(3.9166 + 1) + \frac{1}{3}(6.2630) + \frac{2}{3}(8.1613)$$

$$= 0.6544 + 2.0876 + 5.4408 = 8.1830.$$

 \cdots 15 marks

11. (10 marks) Assume that $g \in C[a, b]$. If the range of the mapping y = g(x) satisfies $y \in [a, b]$ for all $x \in [a, b]$, then g has a fixed point in [a, b]. Proof. If g(a) = a or g(b) = b, the assertion is true. Otherwise, the values of g(a) and g(b) must satisfy $g(a) \in (a, b]$ and $g(b) \in [a, b)$. The function f(x) = x - g(x) has the property that

$$f(a) = a - g(a) < 0$$
 and $f(b) = b - g(b) > 0$.

 \cdots 5 marks

Now apply **Zero Value Theorem** to f(x), and conclude that there exists a number P with $P \in (a, b)$ so that f(P) = 0. Therefore, P = g(P) and P is the desired fixed point of g(x).

 \cdots 10 marks