Anhui University

Semester 1, 2004-2005 Final Examination (Paper A)

Subject title:

Time allowed: 2 hours	School or Department:	
Major:	Student Name:	
Student Number:	Seat Number:	

Question No.	1	2	3	4	5	6	7	8	9	10	11	Referee	Score
Marks													

In question 1-6, please choose the correct answer (only one is correct)

- 1. (5 marks) Word "MATLAB" comes form
 - (A) Mathematics Laboratory
 - (B) Matrix Laboratory
 - (C) Mathematica Laboratory
 - (D) Maple Laboratory
- **2.** (5 marks) The matrix

$$\left(\begin{array}{rrrr}
4 & -1 & 1 \\
4 & -8 & 1 \\
-2 & 1 & 5
\end{array}\right)$$

is

- (A) a strictly diagonally dominant matrix;
- (B) not a strictly diagonally dominant matrix;
- (C) a singular matrix;
- (D) a matrix whose determinant is equal to zero.

3. (5 marks) The computational complexity of Gaussian elimination for solving linear equation systems AX = B (A is $N \times N$ matrix) is

(A) O(N), (B) $O(N^2)$, (C) $O(N^3)$, (D) $O(N^4)$.

4. (5 marks) Assume that f(x) is defined on [a, b], which contains equally spaced nodes $x_k = x_0 + hk$. Additionally, assume that f''(x) is continuous on [a, b]. If we use Lagrange interpolation polynomial

$$P_1(x) = \sum_{k=0}^{1} f(x_k) L_{1,k}(x)$$

to approximate f(x), then the error $E_1(x)$ is

(A) O(1) (B) O(h) (C) $O(h^2)$ (D) $O(h^3)$

5. (5 marks) Degree 4 Chebyshev Polynomial $T_4(x)$ is

- (A) an odd function, (B) an even function
- (C) not odd or even function, (D) both odd and even function
- 6. (5 marks) Padé Approximation is
 - (A) A rational polynomial approximation
 - (B) A polynomial approximation
 - (C) A triangular polynomial approximation
 - (D) A linear function approximation

7. (15 marks) Use the false position method to find the root of $x \sin(x) - 1 = 0$ that is located in the interval [0, 2] (the function $\sin(x)$ is evaluated in radians).

8. (15 marks) In the following linear equation systems

$$4x - y + z = 7$$

$$4x - 8y + z = -21$$

$$-2x + y - 5z = 15,$$

start with $P_0 = (1, 2, 2)$, and use Gauss-Seidel iteration to find P_k for k = 1, 2. Will Gauss-Seidel iteration converge to the solution?

9. (15 marks) Consider $y = f(x) = \cos(x)$ over [0.0, 1.2]. Use the three nodes $x_0 = 0.0, x_1 = 0.6$, and $x_2 = 1.2$ to construct a quadratic interpolation polynomial $P_2(x)$.

10. (15 marks) Consider $f(x) = 2 + \sin(2\sqrt{x})$. Use the composite Simpson rule with 11 sample points to compute an approximation to the integral of f(x) taken over [1, 6].

11. (10 marks) Assume that $g \in C[a, b]$. If the range of the mapping y = g(x) satisfies $y \in [a, b]$ for all $x \in [a, b]$, then g has a fixed point in [a, b].