
Chapter 1

The Solution of Nonlinear
Equations f (x) = 0

Consider the physical problem that involves a spherical ball of radius r that is sub-
merged to a depth d in water(see Figure 1.1). Assume that the ball is constructed from
a variety of longleaf pine that has a density of ρ = 0.638 and that its radius measures
r = 10 cm. How much of the ball will be submerged when it is placed in water?

The mass Mw of water displaced when a sphere is submerged to a depth d is

Mw =
∫ d

0
π(r2 − (x− r)2)dx =

πd2(3r − d)

3
.

and the mass of the ball is Mb = 4πr3ρ/3. Applying Archimedes’ law Mw = Mb,
produces the following equation that must be solved:

π(d3 − 3d2r + 4r3ρ)

3
= 0.

Figure 1.1 The portion of a sphere of radius r that is to be submerged to depth d.
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Figure 1.2 The cubic y = 2552− 30d2 + d3.

In our case (with r = 10 and ρ = 0.638) this equation becomes

π(2552− 30d2 + d3)

3
= 0.

The graph of the cubic polynomial y = 2552 − 30d2 + d3 is shown in Figure 1.2 and
from it one can see that the solution lies near the value d = 12.

The goal of this chapter is to develop a variety of methods for finding numerical
approximations for the roots of an equation. For example, the bisection method could
be applied to obtain the three roots d1 = −8.17607212, d2 = 11.86150151, and d3 =
26.31457061. The first root d1 is not a feasible solution for this problem, because d
cannot be negative. The third root d3 is larger than the diameter of the sphere and it
is not the desired solution. The root d2 = 11.86150151 lies in the interval [0, 20] and
is the proper solution. Its magnitude is reasonable because a little more than one-half
of the sphere must be submerged.

1.1 Iteration for Solving x = g(x)

A fundamental principle in computer science is iteration. As the name suggests, a
process is repeated until an answer is achieved. Iterative techniques are used to find
roots equations, solutions of linear and nonlinear systems of equations, and solutions of
differential equations. In this section we study the process of iteration using repeated
substitution.

A rule or function g(x) for computing successive terms is needed, together with a
starting value p0. Then a sequence of values {pk} is obtained using the iterative rule

2



pk+1 = g(pk). The sequence has the pattern

p0 (starting value)
p1 = g(p0)
p2 = g(p1)
...
pk = g(pk−1)
pk+1 = g(pk)
...

(1.1)

What can we learn from an unending sequence of numbers? If the numbers tend to
a limit, we feel that something has been achieved. But what if the numbers diverge or
are periodic? The next example addresses this situation.

Example 1.1. The iterative rule p0 = 1 and pk+1 = 1.001pk for k = 0, 1, . . . pro-
duces a divergent sequence. The first 100 terms look as follows:

p1 = 1.001p0 = (1.001)(1.000000) = 1.001000,

p2 = 1.001p1 = (1.001)(1.001000) = 1.002001,

p3 = 1.001p2 = (1.001)(1.002001) = 1.003003,

...
...

...

p100 = 1.001p99 = (1.001)(1.104012) = 1.105116.

The process can be continued indefinitely, and it is easily shown that limn→∞ pn = +∞.
In Chapter 9 we will see that the sequence {pk} is a numerical solution to the differ-
ential equation y′ = 0.001y. The solution is known to be y(x) = e0.001x. Indeed, if we
compare the 100th term in the sequence with y(100), we see that p100 = 1.105116 ≈
1.105171 = e0.1 = y(100).

In this section we are concerned with the types of functions g(x) that produce
convergent sequences {pk}.

1.1.1 Finding Fixed Points

Definition 1.1 (Fixed Point). A fixed point of a function g(x) is a real number P
such that P = g(P ).

Geometrically, the fixed points of a function y = g(x) are the points of intersection
of y = g(x) and y = x.

Definition 1.2 (Fixed-point Iteration). The iteration pn+1 = g(pn) for n = 0, 1, . . .
is called fixed-point iteration .
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Theorem 1.1. Assume that g is a continuous function and that {pn}∞n=0 is a se-
quence generated by fixed-point iteration. If limn→∞ pn = P , then P is a fixed point
of g(x).

Proof. If limn→∞ pn = P , then limn→∞ pn+1 = P . It follows from this result, the
continuity of g, and the relation pn+1 = g(pn) that

g(P ) = g( lim
n→∞ pn) = lim

n→∞ g(pn) = lim
n→∞ pn+1 = P. (1.2)

Therefore, P is a fixed point of g(x).

Example 1.2. Consider the convergent iteration

p0 = 0.5 and pk+1 = e−pk for k = 0, 1, . . . .

The first 10 terms are obtained by the calculations

p1 = e−0.500000 = 0.606531

p2 = e−0.606531 = 0.545239

p3 = e−0.545239 = 0.579703

...
...

p9 = e−0.566409 = 0.567560

p10 = e−0.567560 = 0.566907

The sequence is converging, and further calculations reveal that

lim
n→∞ pn = 0.567143 . . . .

Thus we have found an approximation for the fixed point of the function y = e−x.

The following two theorems establish conditions for the existence of a fixed point
and the convergence of the fixed-point iteration process to a fixed point.

Theorem 1.2 Assume that g ∈ C[a, b].

If the range of the mapping y = g(x) satisfies y ∈ [a, b] for all x ∈ [a, b], then
g has a fixed point in [a, b].

(1.3)
Furthermore, suppose that g′(x) is defined over (a, b) and that a positive
constant K < 1 exists with |g′(x)| ≤ K < 1 for all x ∈ (a, b) , then g has a
unique fixed point P in [a, b].

(1.4)
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Proof of (1.3). If g(a) = a or g(b) = b, the assertion is true. Otherwise, the values of
g(a) and g(b) must satisfy g(a) ∈ (a, b] and g(b) ∈ [a, b). The function f(x) = x− g(x)
has the property that

f(a) = a− g(a) < 0 and f(b) = b− g(b) > 0.

Now apply Theorem 0.2, the Intermediate Value Theorem, to f(x), with the constant
L = 0, and conclude that there exists a number P with P ∈ (a, b) so that f(P ) = 0.
Therefore, P = g(P ) and P is the desired fixed point of g(x).

Proof of (1.4). Now we must show that this solution is unique. By way of contra-
diction, let us make the additional assumption that there exist two fixed points P1 and
P2. Now apply Theorem 0.6, the Mean Value Theorem, and conclude that there exists
a number d ∈ (a, b) so that

g′(d) =
g(P2)− g(P1)

P2 − P1

. (1.5)

Next, use the facts that g(P1) = P1 and g(P2) = P2 to simplify the right side of
equation (1.5) and obtain

g′(d) =
P2 − P1

P2 − P1

= 1.

But this contradicts the hypothesis in (1.4) that|g′(x)| < 1 over (a, b), so it is not
possible for two fixed points to exist. Therefore, g(x) has a unique fixed point P in
[a, b] under the conditions given in (1.4).

Example 1.3. Apply Theorem 1.2 to rigorously show that g(x) = cos(x) has a unique
fixed point in [0, 1].

Clearly, g ∈ C[0, 1] secondly, g(x) = cos(x) is a decreasing function on [0, 1], thus
its range on [0, 1] is [cos(1), 1] ⊆ [0, 1]. Thus condition (3) of Theorem 2.2 is satisfied
and g has a fixed point in [0, 1]. Finally, if x ∈ (0, 1), then |g′(x)| = | − sin(x)| =
sin(x) ≤ sin(1) < 0.8415 < 1. Thus K = sin(1) < 1, condition (1.4) of Theorem 1.2 is
satisfied, and g has a unique fixed point in [0, 1].

We can now state a theorem that can be used to determine whether the fixed-point
iteration process given in (1.1) will produce a convergent or divergent sequence.

Theorem 1.3 (Fixed-point Theorem). Assume that (i) g, g′ ∈ C[a, b], (ii) K
is a positive constant, (iii) P0 ∈ (a, b), and (iv) g(x) ∈ [a, b] for all x ∈ [a, b].

If |g′(x)| ≤ K < 1 for all x ∈ [a, b], then the iteration pn = g(pn−1) will
converge to the unique fixed point P ∈ [a, b]. In this case, P is said to be
an attractive fixed point.

(1.6)

If |g′(x)| > 1 for all x ∈ [a, b] , then the iteration pn = g(pn−1) will not con-
verge to P. In this case, P is said to be a repelling fixed point and the iter-
ation exhibits local divergence.

(1.7)
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Figure 1.3 The relationship among P, p0, p1, |P − p0| and |P − p1

Remark 1. It is assumed that p0 6= P in statement (1.7)
Remark 2. Because g is continuous on an interval containing P, it is permissible to use
the simpler criterion |g′(P )| ≤ K < 1 and |g′(P )| > 1 in (1.6) and (1,7), respectively.
Proof. We first show that the points {pn}∞n=0 all lie in (a, b). Starting with p0, we apply
Theorem 0.6, the Mean Value Theorem. There exists a value c0 ∈ (a, b) so that

|P − p1| = |g(P )− g(p0)| = |g′(c0)(P − p0)|
= |g′(c0)||P − p0| ≤ K|P − p0| < |P − p0|. (1.8)

Therefore, p1 is no further from P than P0 was, and it follows that p1 ∈ (a, b) (see
Figure 1.3). In general, suppose that pn−1 ∈ (a, b); then

|P − pn| = |g(P )− g(pn−1)| = |g′(cn−1)(P − pn−1)|
= |g′(cn−1)||P − pn−1)| ≤ K|P − pn−1| < |P − pn−1)|. (1.9)

Therefore, pn ∈ (a, b) and hence, by induction, all the points {pn}∞n=0 lie in (a, b).
To complete the proof of (1.6), we will show that

lim
n→∞ |P − pn| = 0. (1.10)

First, a proof by induction will establish the inequality

|P − pn| ≤ Kn|P − p0|. (1.11)

The case n = 1 follows from the details in relation (1.8). Using the induction hypothesis
|P − pn−1| ≤ Kn−1|P − p0| and the ideas in (1.9), we obtain

|P − pn| ≤ K|P − pn−1| ≤ KKn−1|P − p0| = Kn|P − p0|.

Thus, by induction, inequality (1.11) holds for all n, Since 0 < K < 1, the term Kn

goes to zero as n goes to infinity. Hence

0 ≤ lim
n→∞ |P − pn| ≤ lim

n→∞Kn|P − p0| = 0. (1.12)

The limit of |P − pn| is squeezed between zero on the left and zero on the right, so we
can conclude that limn→∞ |P − pn| = 0. Thus limn→∞ pn = P and, by Theorem 1.1,
the iteration pn = g(pn−1) converges to the fixed point P. Therefore, statement (1.6)
of Theorem 1.3 is proved. We leave statement (1.7) for the reader to investigate.
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Figure 1.4 (a) Monotone convergence when 0 < g′(P ) < 1.

Figure 1.4 (a) Monotone convergence when −1 < g′(P ) < 0.

Corollary 1.1. Assume that g satisfies the hypothesis given in (1.6) of Theorem
1.3. Bounds for the error involved when using pn to approximate P are given by

|P − pn| ≤ Kn|P − p0| for all n ≥ 1, (1.13)

and

|P − pn| ≤ Kn|P − p0|
1−K

for all n ≥ 1, (1.14)
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Figure 1.5 (a) Monntone divergence when 1 < g′(P ).

Figure 1.5 (b) Divergent oscillation when g′(P ) < −1.

1.1.2 Graphical Interpretation of Fixed-point Iteration

Since we seek a fixed point P to g(x), it is necessary that the graph of the curve
y = g(x) and the line y = x intersect at the point (P, P ). Two simple types of
convergent iteration, monotone and oscillating, are illustrated in Figure 1.4(a) and(b),
respectively.

To visualize the process, start at p0 on the x -axis and move vertically to the point
(p0, p1) = (p0, g(p0)) on the curve y = g(x). Then move horizontally from (p0, p1) to
the point (p1, p1) on the line y = x. Finally, move vertically downward to p1 on the
x -axis. The recursion pn+1 = g(pn) is used to construct the point (pn, pn+1) on the
graph, then a horizontal motion locates (pn+1, pn+1) on the line y = x, and then a
vertical movement ends up at pn+1 on the x -axis. The situation is shown in Figure1.4.
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If |g′(P )| > 1, then the iteration pn+1 = g(pn) produces a sequence that diverges
away from P. The two simple types of divergent iteration, monotone and oscillating,
are illustrated in Figure 1.5 (a) and (b), respectively.

Example 1.4. Consider the iteration pn+1 = g(pn) when the function g(x) = 1 +
x−x2/4 is used. The fixed points can be found by solving the equation x = g(x). The
two solutions (fixed points of g) are x = −2 and x = 2. The derivative of the function
is g′(x) = 1− x/2, and there are only two cases to consider.

Case(i) P = −2 Case(ii): P = 2
Start with p0 = −2.05 Start with p0 = 1.6
then get p1 = −2.100625 then get p1 = 1.96

p2 = −2.20378135 p2 = 1.9996
p3 = −2.41794441 p3 = 1.99999996

...
...

lim
n→∞ pn = −∞ lim

n→∞ pn = 2.

Since |g′(x)| > 3
2 on [−3,−1], by The- Since |g′(x)| < 1

2 on [1, 3], by Theo-
orem 1.3, the sequence will not converge rem 1.3, the sequence will converge to
to P = −2 P = 2.

Theorem 1.3 does not state what will happen when g′(P ) = 1. The next example
has been specially constructed so that the sequence [pn] converges whenever p0 > P
and it diverges if we choose p0 < P .

Example 1.5. Consider the iteration pn+1 = g(pn) when the function g(x) = 2(x −
1)1/2 for x ≥ 1 is used. Only one fixed point P = 2 exists. The derivative is
g′(x) = 1/(x − 1)1/2 and g′(2) = 1, so Theorem 3.3 does not apply. There are two
cases to consider when the starting value lies to the left or right of P = 2.

Case(i) Start with p0 = 1.5 Case(ii): Start with p0 = 2.5
then get p1 = 1.41421356 then get p1 = 2.44948974

p2 = 1.28718851 p2 = 2.40789513
p3 = 1.07179943 p3 = 2.37309514
p4 = 0.53590832 p4 = 2.34358284

...
...

p5 = 2(−0.46409168)1/2. lim
n→∞ pn = 2.

Since p4 lies outside the domain of This sequence is converging too slowly
g(x), the term p5 cannot be computed to the value P = 2; indeed, P1000 =

2.00398714.
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1.1.3 Absolute and Relative Error Considerations

In Example 1.5, case (ii), the sequence converges slowly, and after 1000 iterations the
three consecutive terms are

P1000 = 2.00398714, P1001 = 2.00398317, and P1002 = 2.00397921.

This should not be disturbing; after all, we could compute a few thousand more terms
and find a better approximation! But what about a criterion for stopping the iteration?
Notice that if we use the difference between consecutive terms,

|p1001 − p1002| = |2.00398317− 2.00397921| = 0.00000396.

Yet the absolute error in the approximation P1000 is known to be

|P − p1000| = |2.00000000− 2.00398714| = 0.00398714.

This is about 1000 times larger than |p1001 − p1002| and it shows that closeness of
consecutive terms does not guarantee that accuracy has been achieved. But it is usually
the only criterion available and is often used to terminate an iterative procedure.

Program 1.1 (Fixed-Point Iteration). To approximate a solution to the
equation x = g(x) starting with the initial guess p0 and iterating pn+1 = g(pn).

Function [k, p, err, P] =fixpt(g, po, tol, max1)
% Input − g is the iteration function input as a string ′g′

% − po is the initial guess for the fixed point
% − tol is the tolerance
% − max1 is the maximum number of iterations
%Output− k is the number of iterations that were carried out
% − p is the approximation to the fixed point
% − err is the error in the approximation
% − P contains the sequence {pn}
P(1)= po;
for k=2:max1

P(k)=feval(g, P(k−1));
err=abs(P(k)−P(k−1));
relerr=err/(abs(P(k))+eps);
p=P(k);
if (err<tol) | (relerr<tol), break; end

end
if k == max1

disp(’maximum number of iterations exceeded’)
end
P=P’;
Remark. When using the user-defined function fixpt, it is necessary to input the M-file
g.m as a string: ’g’ (see MATLAB Appendix).
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1.1.4 Exercises for Iteration for Solving x = g(x)

1. Determine rigorously if each function has a unique fixed point on the given interval
(follow Example 1.3).
(a) g(x) = 1− x2/4 on [0, 1]
(b) g(x) = 2−x on [0, 1]
(c) g(x) = 1/x on [0.5, 5.2]

2. Investigate the nature of the fixed-point iteration when

g(x) = −4 + 4x− 1

2
x2.

(a) Solve g(x) = x and show that P = 2 and P = 4 are fixed points.
(b) Use the starting value p0 = 1.9 and compute p1, p2, and p3.
(c) Use the starting value p0 = 3.8 and compute p1, p2, and p3.
(d) Find the errors Ek and relative errors Rk for the values pk in parts (b) and (c).
(e) What conclusions can be drawn from Theorem 1.3?

3. Graph g(x), the line y = x, and the given fixed point P on the same coordinate
system. Using the given starting value p0, compute p1 and p2. Construct figures
similar to Figures 1.4 and 1.5. Based on your graph, determine geometrically if
fixed-point iteration converges.
(a) g(x) = (6 + x)1/2, P = 3, and p0 = 7
(b) g(x) = 1 + 2/x, P = 2, and p0 = 4
(c) g(x) = x2/3, P = 3, and p0 = 3.5
(d) g(x) = −x2 + 2x + 2, P = 2, and p0 = 2.5

4. Let g(x) = x2 + x− 4. Can fixed-point iteration be used to find the solution(s) to
the equation x = g(x)? Why?

5. Let g(x) = x cos(x). Solve x = g(x) and find all the fixed points of g (there
are infinitely many). Can fixed-point iteration be used to find the solution(s) to
the equation x = g(x)? Why?

6. Suppose that g(x) and g′(x) are defined and continuous on (a, b); p0, p1, p2 ∈ (a, b);
and p1 = g(p0) and p2 = g(p1). Also, assume that there exists a constant K such
that |g′(x)| < K. Show that |p2 − p1| < K|p1 − p0|. Hint. Use the Mean Value
Theorem.

7. Suppose that g(x) and g′(x) are continuous on (a, b) and that |g′(x)| > 1 on this
interval. If the fixed point P and the initial approximations p0 and p1 lie in the
interval (a, b), then show that p1 = g(p0) implies that |E1| = |P − p1| > |P − p0| =
|E0|. Hence statement (1.7) of Theorem 1.3 is established (local divergence).

8. Let g(x) = −0.0001x2 + x and p0 = 1, and consider fixed-point iteration.
(a) Show that p0 > p1 > · · · > pn > pn+1 > · · ·.
(b) Show that pn > 0 for all n.
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(c) Since the sequence {pn} is decreasing and bounded below, it has a limit. What
is the limit?

9. Let g(x) = 0.5x + 1.5 and p0 = 4, and consider fixed-point iteration.
(a) Show that the fixed point is P = 3.
(b) Show that |P − pn| = |P − pn−1|/2 for n = 1, 2, 3, . . ..
(c) Show that |P − pn| = |P − p0|/2n for n = 1, 2, 3, . . ..

10. Let g(x) = x/2, and consider fixed-point iteration.
(a) Find the quantity |pk+1 − pk|/pk+1.
(b) Discuss what will happen if only the relative error stopping criterion were used
in Program 1.1.

11. For fixed-point iteration, discuss why it is an advantage to have g′(P ) ≈ 0.

1.1.5 Algorithms and Programs

1. Use Program 1.1 to approximate the fixed points (if any) of each function. Answers
should be accurate to 12 decimal places. Produce a graph of each function and the
line y = x that clearly shows any fixed points.
(a) g(x) = x5 − 3x3 − 2x2 + 2
(b) g(x) = cos(sin(x))
(c) g(x) = x2 − sin(x + 0.15)
(d) g(x) = xx−cos(x)

1.2 Bracketing Methods for Locating a Root

Consider a familiar topic of interest. Suppose that you save money by making regular
monthly deposits P and the annual interest rate is I ; then the total amount A after N
deposits is

A = P + P
(
1 +

I

12

)
+ P

(
1 +

I

12

)2

+ · · ·+ P
(
1 +

I

12

)N−1

. (1.15)

The first term on the right side of equation (1.15) is the last payment. Then the next-
to-last payment, which has earned one period of interest, contributes P (1 + I

12
). The

second-from-last payment has earned two periods of interest and contributes P (1+ I
12

)2,
and so on. Finally, the last payment, which has earned interest for N − 1 periods,
contributes P (1 + I

12
)N−1 toward the total. Recall that the formula for the sum of the

N terms of a geometric series is

1 + r + r2 + r3 + · · ·+ rN−1 =
1− rN

1− r
. (1.16)
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We can write (1.15) in the form

A = P

(
1 +

(
1 +

I

12

)
+

(
1 +

I

12

)2

+ · · ·+
(
1 +

I

12

)N−1
)

.

and use the substitution r = (1 + I/12) in (1.16) to obtain

A = P
1− (1 + I

12
)N

1− (1 + I
12

)
.

This can be simplified to obtain the annuity-due equation,

A =
P

I/12

((
1 +

I

12

)N

− 1

)
. (1.17)

The following example uses the annuity-due equation and requires a sequence of
repeated calculations to find an answer.

Example 1.6. You save $250 per month for 20 years and desire that the total value
of all payments and interest is $250,000 at the end of the 20 years. What interest rate
I is needed to achieve your goal? If we hold N = 240 fixed, then A is a function of
I alone; that is A = A(I). We will start with two guesses, I0 = 0.12 and I1 = 0.13,
and perform a sequence of calculations to narrow down the final answer. Starting with
I0 = 0.12 yields

A(0.12) =
250

0.12/12

((
1 +

0.12

12

)240 − 1
)

= 247, 314.

Since this value is a little short of the goal, we next try I1 = 0.13:

A(0.13) =
250

0.13/12

((
1 +

0.13

12

)240 − 1
)

= 282, 311.

This is a little high, so we try the value in the middle I2 = 0.125:

A(0.125) =
250

0.125/12

((
1 +

0.125

12

)240 − 1
)

= 264, 623.

This is again high and we conclude that the desired rate lies in the interval [0.12, 0.125].
The next guess is the midpoint I3 = 0.1225:

A(0.1225) =
250

0.1225/12

((
1 +

0.1225

12

)240 − 1
)

= 255, 803.

This is high and the interval is now narrowed to [0.12, 0.1225]. Our last calculation
uses the midpoint approximation I4 = 0.12125:

A(0.12125) =
250

0.12125/12

((
1 +

0.12125

12

)240 − 1
)

= 251, 518.
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(a) If f(a) and f(c) have opposite signs then squeeze from the right.
(b) If f(c) and f(b) have opposite signs then squeeze from the left.

Figure 1.6 The decision process for the bisection process.

Further iterations can be done to obtain as many significant digits as required. The
purpose of this example was to find the value of I that produced a specified level L of
the function value, that is to find a solution to A(I) = L. It is standard practice to
place the constant L on the left and solve the equation A(I)− L = 0.

Definition 1.3 (Root of an Equation, Zero of a Function). Assume that f(x)
is a continuous function. Any number r for which f(r) = 0 is called a root of the
equation f(x) = 0. Also, we say r is a zero of the function f(x).

For example, the equation 2x2 +5x−3 = 0 has two real roots r1 = 0.5 and r3 = −3,
whereas the corresponding function f(x) = 2x2 +5x− 3 = (2x− 1)(x+3) has two real
zeros, r1 = 0.5 and r2 = −3.

1.2.1 The Bisection Method of Bolzano

In this section we develop our first bracketing method for finding a zero of a continuous
function. We must start with an initial interval [a, b], where f(a) and f(b) have opposite
signs. Since the graph y = f(x) of a continuous function is unbroken, it will cross the
x -axis at a zero x = r that lies somewhere in the interval (see Figure 1.6). The
bisection method systematically moves the end points of the interval closer and closer
together until we obtain an interval of arbitrarily small width that brackets the zero.
The decision step for this process of interval halving is first to choose the midpoint
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c = (a + b)/2 and then to analyze the three possibilities that might arise:

If f(a) and f(c) have opposite signs, a zero lies in [a, c]. (1.18)

If f(c) and f(b) have opposite signs, a zero lies in [c, b]. (1.19)

If f(c) = 0, then the zero is c. (1.20)

If either case (1.18) or (1.19) occurs, we have found an interval half as wide as the
original interval that contains the root, and we are ”squeezing down on it” (see Figure
1.6). To continue the process, relabel the new smaller interval [a, b] and repeat the
process until the interval is as small as desired. Since the bisection process involves
sequences of nested intervals and their midpoints, we will use the following notation to
keep track of the details in the process:

[a0, b0] is the starting interval andc0 = a0+b0
2

is the midpoint.
[a1, b1] is the second interval, which brackets the zero r, and c1 is its midpoint;
the interval [a1, b1] is half as wide as [a0, b0].
After arriving at thenth interval [an, bn], which brackets r and has midpoint
cn, the interval [an+1, bn+1] is constructed, which also brackets r and is half
as wide as [an, bn].

(1.21)
It is left as an exercise for the reader to show that the sequence of left end points is
increasing and the sequence of right end points is decreasing; that is,

a0 ≤ a1 ≤ · · · ≤ an ≤ · · · ≤ r ≤ · · · ≤ bn ≤ · · · ≤ b1 ≤ b0, (1.22)

where cn = an+bn

2
, and if f(an+1)f(bn+1) < 0, then

[an+1, bn+1] = [an, cn] or [an+1, bn+1] = [cn, bn] for all n (1.23)

Theorem 1.4 (Bisection Theorem). Assume that f ∈ C[a, b] and that there exists
a number r ∈ [a, b] such that f(r) = 0. If f(a) and f(b) have opposite signs, and
{cn}∞n=0 represents the sequence of midpoints generated by the bisection process of
(1.22) and (1.23), then

|r − cn| ≤ b− a

2n+1
n = 0, 1, . . . , (1.24)

and there fore the sequence {cn}∞n=0 converges to the zero x = r; that is,

lim
n→∞ cn = r. (1.25)

Proof. Since both the zero r and the midpoint lie in the interval [an, bn], the distance
between cn and r cannot be greater than half the width of this interval (see Figure
1.7). Thus

|r − cn| ≤ bn − an

2
for all n (1.26)
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Observe that the successive interval widths form the pattern

b1 − a1 =
b0 − a0

21

b2 − a2 =
b1 − a1

2
=

b0 − a0

2
.

It is left as an exercise for the reader to use mathematical induction and show that

bn − an =
b0 − a0

2n
. (1.27)

Combining (1.26) and (1.27) results in

|r − cn| ≤ b0 − a0

2n+1
for all n. (1.28)

Now an argument similar to the one given in Theorem 1.3 can be used to show that
(1.28) implies that the sequence {cn}∞n=0 converges to r and the proof of the theorem
is complete.

Example 1.7. The function h(x) = x sin(x) occurs in the study of undamped forced
oscillations. Find the value of x that lies in the interval [0, 2], where the function takes
on the value h(x) = 1 (the function sin(x) is evaluated in radians).

We use the bisection method to find a zero of the function f(x) = x sin(x) − 1.
Starting with a0 = 0 and b0 = 2, we compute

f(0) = −1.000000 and f(2) = 0.818595,

so a root of f(x) = 0 lies in the interval [0, 2]. At the midpoint c0 = 1, we find that
f(1) = 0.158529. Hence the function changes sign on [c0, b0] = [1, 2].

To continue, we squeeze from the left and set a1 = c0 and b1 = b0. The midpoint is
c1 = 1.5 and f(c1) = 0.496242. Now, f(1) = −0.158529 and f(1.5) = 0.496242 imply
that the root lies in the interval [a1, c1] = [1.0, 1.5]. The next decision is to squeeze
from the right and set a2 = a1 and b2 = c1. In this manner we obtain a sequence {ck}
that converges to r ≈ 1.114157141. A sample calculation is given in Table 1.1.
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Table 1.1 Bisection Method Solution of x sin(x)− 1 = 0

Left Right Function value,
k end point, ak Midpoint, ck end point, bk f(ck)
0 0 1 2 −0.158529
1 1.0 1.5 2.0 0.496242
2 1.00 1.25 1.50 0.186231
3 1.000 1.125 1.250 0.015051
4 1.0000 1.0615 1.1250 −0.071827
5 1.06250 1.09375 1.12500 −0.028362
6 1.093750 1.109375 1.125000 −0.006643
7 1.1093750 1.1171875 1.1250000 0.004208
8 1.10937500 1.11328125 1.11718750 −0.001216
...

...
...

...
...

A virtue of the bisection method is that formula (1.24) provides a predetermined
estimate for the accuracy of the computed solution. In Example 1.7 the width of
the starting interval was b0 − a0 = 2. Suppose that Table 1.1 were continued to the
thirty-first iterate; then, by (1.24), the error bound would be |E31| ≤ (2 − 0)/232 ≈
4.656613× 10−10. Hence c31 would be an approximation to r with nine decimal places
of accuracy. The number N of repeated bisections needed to guarantee that the N th
midpoint cN is an approximation to a zero and has an error less than the preassigned
value δ is

N = int

(
ln(b− a)− ln(δ)

ln(2)

)
(1.29)

The proof of this formula is left as an exercise.
Another popular algorithm is the method of false position or the regula falsi

method . It was developed because the bisection method converges at a fairly slow
speed. As before, we assume that f(a) and f(b) have opposite sings. The bisection
method used the midpoint of the interval [a, b] as the next iterate. A better approxi-
mation is obtained if we find the point (c, 0) where the secant line L joining the points
(a, f(a)) and (b, f(b)) crosses the x -axis (see Figure 1.8). To find the value c, we write
down two versions of the slope m of the line L:

m =
f(b)− f(a)

b− a
, (1.30)

where the points (a, f(a)) and (b, f(b)) are used, and

m =
0− f(b)

c− b
, (1.31)
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(b) If f(c) and f(b) have opposite signs then squeeze from the left.

Figure 1.8 The decision process for the false position method.

where the points (c, 0) and (b, f(b)) are used.
Equating the slopes in (1.30) and (1.31), we have

f(b)− f(a)

b− a
=

0− f(b)

c− b
,

which is easily solved for c to get

c = b− f(b)(b− a)

f(b)− f(a)
. (1.32)

The three possibilities are the same as before:

If f(a) and f(c) have opposite signs, a zero lies in [a, c]. (1.33)

If f(c) and f(b) have opposite signs, a zero lies in [c, b]. (1.34)

If f(c) = 0, then the zero is c. (1.35)

1.2.2 Convergence of the False Position Method

The decision process implied by (1.33) and (1.34) along with (1.32) is used to construct
a sequence of intervals {[an, bn]} each of which brackets the zero. At each step the
approximation of the zero r is

cn = bn − f(bn)(bn − an)

f(bn)− f(an)
, (1.36)
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Figure 1.9 The stationary endpoint for the false position method.

and it can be proved that the sequence {cn} will converge to r. But beware, although
the interval width bn − an is getting smaller, it is possible that it may not go to zero.
If the graph of y = f(x) is concave near (r, 0), one of the end points becomes fixed and
the other one marches into the solution (see Figure 1.9).

Now we rework the solution to x sin(x) − 1 = 0 using the method of false posi-
tion and observe that it converges faster than the bisection method. Also, notice that
{bn, an}∞n=0 does not go to zero.

Example 1.8. Use the false position method to find the root of x sin(x) − 1 = 0
that is located in the interval [0, 2] (the function sin(x) is evaluated in radians).

Starting with a0 = 0 and b0 = 2, we have f(0) = −1.00000000 and f(2) =
0.81859485, so a root lies in the interval [0, 2]. Using formula (1.36), we get

c0 = 2− 0.81859485(2− 1.09975017)

0.81859485
= 1.09975017 and f(c0) = −0.02001921.

The function changes sign on the interval [c0, b0] = [1.09975017, 2], so we squeeze from
the left and set a1 = c0 and b1 = b0. Formula (1.36) produces the next approximation:

c1 = 2− 0.81859485(2− 1.9975017)

0.8185948− (−0.02001921)
= 1.12124074

and
f(c1) = 0.00983461.

Next f(x) changes sign on [a1, c1] = [1.09975017, 1.12124074], and the next decision is
to squeeze from the right and set a2 = a1 and b2 = c1. A summary of the calculations
is given in Table 1.2.

The termination criterion used in the bisection method is not useful for the false
position method and may result in an infinite loop. The closeness of consecutive iter-
ates and the size of |f(cn)| are both used in the termination criterion for Program 1.3.
In section 1.3 we discuss the reasons for this choice.
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Table 1.2 False Position Method Solution of x sin(x)− 1 = 0

Left Right Function value
k end point, ak Midpoint, ck end point, bk f(ck)
0 0.00000000 1.09975017 2.000000 −0.02001921
1 1.09975017 1.12124074 2.00000000 0.00983461
2 1.09975017 1.11416120 1.12124074 0.00000563
3 1.09975017 1.11415714 1.11416120 0.00000000

Program 1.2 (Bisection Method). To approximate a root of the equa-
tion f(x) = 0 in the interval [a, b]. Proceed with the method only if f(x) is
continuous and f(a) and f(b) have opposite signs.

function [c,err,yc]=bisect(f,a,b,delta)
%Input - f is the function input as a string ’f’
% - a and b are the left and right end points
% - delta is the tolerance
%Output - c is the zero
% - yc=f(c)
% - err is the error estimate for c
ya=feva1(f,a);
yb=feva1(f,b);
if ya*yb>0, break, end
max1=1+round((1og (b-a)-1og (delta))/1og(2));
for k=1:max1

c=(a+b)/2;
yc=feva1(f,c);

if yc==0
a=c;
b=c;

elseif yb*yc>0
b=c; yb=yc;

else
a=c;
ya=yc;

end
if b-a<delta, break, end

end
c=(a+b)/2;
err=abs(b-a);
yc=feva1(f,c);
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Program 1.3 (False Position or Regula Falsi Method). To approxi-
mate a root of the equation f(x) = 0 in the interval [a, b]. Proceed with
the method only if f(x) is continuous and f(a) and f(b) have opposite signs.

function [c, err, yc] = regula (f, a, b, delta, epsilon, maxl)
%Input - f is the function input as a string ’f’
% - a and b are the left and right end points
% - delta is the tolerance for the zero
% - epsilon is the tolerance for the value of f at the zero
% - max1 is the maximum number of iterations
%Output - c is the zero
% - yc = f(c)
% - err is the error estimate for c
ya=feva1(f,a);
yb=feva1(f,a);
if ya*yb>0

disp (’Note: f(a)*f(b)>0’),
break,

end
for k=1:max1

dx=yb*(b-a)/(yb-ba);
c=b-dx;
ac=c-a;
yc=feval(f,c);
if yc==0, break;
elseif yb*yc>0

b=c;
yb=yc;

end
dx=min (abs (dx), ac);
if abs (dx)<delta, break, end
if abs (yc)<epsilon, break, end
end
c;
err=abs (b-a)/2;
yc=feval(f,c);
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1.2.3 Exercises for Bracketing Methods

In Exercises l and 2, find an approximation for the interest rate I that will yield the
total annuity value A if 240 monthly payments P are made. Use the two starting values
for I and compute the next three approximations using the bisection method.

1. P = $275, A = $250, 000, I0 = 0.11, I1 = 0.12
2. P = $325, A = $400, 000, I0 = 0.13, I1 = 0.14
3. For each function, find an interval [a, b] so that f(a) and f(b) have opposite

signs.
(a) f(x) = ex − 2− x
(b) f(x) = cos(x) + 1− x
(c) f(x) = ln(x)− 5 + x
(d) f(x) = x2 − 10x + 23

In Exercises 4 through 7 start with [a0, b0] and use the false position method to compute
c0, c1, c2 and c3.

4. ex − 2− x = 0, [a0, b0] = [−2.4,−1.6]
5. cos(x) + 1− x = 0, [a0, b0] = [0.8, 1.6]
6. ln(x)− 5 + x = 0, [a0, b0] = [3.2, 4.0]
7. x2 − 10x + 23 = 0, [a0, b0] = [6.0, 6.8]
8. Denote the intervals that arise in the bisection method by [a0, b0], [a1, b1],

. . . , [an, bn].
(a) Show that a0 ≤ a1 ≤ · · · ≤ an ≤ · · · and that · · · ≤ bn ≤ · · · ≤ b1 ≤ b0.
(b) Show that bn − an = (b0 − a0)/2

n.
(c) Let the midpoint of each interval be cn = (an + bn)/2. Show that

lim
n→∞ an = lim

n→∞ cn = lim
n→∞ bn.

Hint. Review convergence of monotone sequences in your calculus book.
9. What will happen if the bisection method is used with the function f(x)

= 1/(x− 2) and
(a) the interval is [3, 7]? (b) the interval is [1, 7]?

10. What will happen if the bisection method is used with the function f(x) =
tan(x) and

(a) the interval is [3, 4]? (b) the interval is [1, 3]?
11. Suppose that the bisection method is used to find a zero of f(x) in the in-

terval [2, 7]. How many times must this interval be bisected to guarantee that
the approximation cN has an accuracy of 5× 10−9?

12. Show that formula (1.36) for the false position method is algebraically equiva-
lent to

cn =
anf(bn)− bnf(an)

f(bn)− f(an)
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13. Establish formula (1.29) for determining the number of iterations required in
the bisection method. Hint. Use |b− a|/2n+1 < δ and take logarithms.

14. The polynomial f(x) = (x− 1)3(x− 2)(x− 3) has three zeros: x = 1 of multi-
plicity 3 and x = 2 and x = 3, each of multiplicity 1. If a0 and b0 are any two
real numbers such that a0 < 1 and b0 > 3, then f(a0)f(b0) < 0. Thus, on the
interval [a0, b0] the bisection method will converge to one of the three zeros. If
a0 < 1 and b0 > 3 are selected such that cn = an+bn

2
is not equal to 1, 2, or 3

for any n ≥ 1, then the bisection method will never converge to which zero(s)?
Why?

15. If a polynomial, f(x), has an odd number of real zeal zeros in the interval
[a0, b0], and each of the zeros is of odd multiplicity, then f(a0)f(b0) < 0, and
the bisection method will converge to one of the zeros. If a0 < 1 and b0 > 3 are
selected such that cn = an+bn

2
is not equal to any of the zeros of f(x) for any

n ≥ 1, then the bisection method will never converge to which zero(s)? Why?

1.2.4 Algorithms and Programs

1. Find an approximation (accurate to 10 decimal places) for the interest rate I
that will yield a total annuity value of $500, 000 if 240 monthly payments of $300
are made.

2. Consider a spherical ball of radius r = 15 cm that is constructed from a variety
of white oak that has a density of ρ = 0.710. How much of the ball (accurate to
8 decimal places) will be submerged when it is placed in water?

3. Modify Programs 1.2 and 1.3 to output a matrix analogous to Tables 1.1
and 1.2, respectively (i.e., the first row of the matrix would be [0 a0 c0 b0 f(c0)]).

4. Use your programs from Problem 3 to approximate the three smallest positive
roots of x = tan(x) (accurate to 8 decimal places).

5. A unit sphere is cut into two segments by a plane. One segment has three times
the volume of the other. Determine the distance x of the plane from the center
of the sphere (accurate to 10 decimal places).

1.3 Initial Approximation and Convergence Crite-

ria

The bracketing methods depend on finding an interval [a, b] so that f(a) and f(b)
have opposite signs. Once the interval has been found, no matter how large, the
iterations will proceed until a root is found. Hence these methods are called globally
convergent. However, if f(x) = 0 has several roots in [a, b], then a different starting
interval must be used to find each root. It is not easy to locate these smaller intervals
on which f(x) changes sign.

In Section 1.4 we develop the Newton-Raphson method and the secant method
for solving f(x) = 0. Both of these methods require that a close approximation to
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the root be given to guarantee convergence. Hence these methods are called locally
convergent . They usually converge more rapidly than do global ones. Some hybrid
algorithms start with a globally convergent method and switch to a locally convergent
method when the iteration gets close to a root.

If the computation of roots is one part of a larger project, then a leisurely pace
is suggested and the first thing to do is graph the function. We can view the graph
y = f(x) and make decisions based on what it looks like (concavity, slope, oscillatory
behavior, local extrema, inflection points, etc.). But more important, if the coordinates
of points on the graph are available, they can be analyzed and the approximate location
of roots determined. These approximations can then be used as starting values in our
root-finding algorithms.

We must proceed carefully. Computer software packages use graphics software of
varying sophistication. Suppose that a computer is used to graph y = f(x) on [a, b].
Typically, the interval is partitioned into N + 1 equally spaced points: a = x0 < x1 <
· · · < xN = b and the function values yk = f(xk) computed. Then either a line segment
or a ”fitted curve” are plotted between consecutive points (xk−1, yk−1) and (xk, yk) for
k = 1, 2, · · · , N . There must be enough points so that we do not miss a root in a
portion of the curve where the function is changing rapidly. If f(x) is continuous and
two adjacent points (xk−1, yk−1) and (xk, yk) lie on opposite sides of the x -axis, then the
Intermediate Value Theorem implies that at least one root lies in the interval [xk−1, xk].
But if there is a root, even several closely spaced roots, in the interval [xk−1, xk] and
the two adjacent points (xk−1, yk−1) and (xk, yk) lie on the same side of the x -axis, then
the computer-generated graph would not indicate a situation where the Intermediate
Value Theorem is applicable. The graph produced by the computer will not be a true
representation of the actual graph of the function f. It is not unusual for functions to
have ”closely” spaced roots; that is, roots where the graph touches but does not cross
the x -axis, or roots ”close” to a vertical asymptote. Such characteristics of a function
need to be considered when applying any numerical root-finding algorithm.

Finally, near two closely spaced roots or near a double root, the computer-generated
curve between (xk−1, yk−1) and (xk, yk) may fail to cross or touch the x -axis. If |f(xk)|
is smaller than a preassigned value ε, (i.e., f(x) ≈ 0), then xk is a tentative approx-
imate root. But the graph may be close to zero over a wide range of values near xk,
and thus xk may not be close to an actual root. Hence we add the requirement that
the slope change sign near (xk, yk); that is, mk−1 = yk−yk−1

xk−xk−1
and mk = yk+1−yk

xk+1−xk
must

have opposite signs. Since xk − xk−1 > 0 and xk+1 − xk > 0, it is not necessary to use
the difference quotients, and it will suffice to check to see if the differences yk − yk−1

and yk+1− yk Change sign. In this case, xk is the approximate root. Unfortunately, we
cannot guarantee that this starting value will produce a convergent sequence. If the
graph of y = f(x) has a local minimum (or maximum) that is extremely close to zero,
then it is possible that xk will be reported as an approximate root when f(xk) ≈ 0,
although xk may not be close to a root.
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Table 1.3 Finding Approximate Locations for Roots

Function value Difference in y significant changes
xk yk−1 yk yk − yk−1 yk+1 − yk in f(x) or f ′(x)
−1.2 −3.125 −0.968 2.157 1.329 f changes sign
−0.9 −0.968 0.361 1.329 0.663 in [xk−1, xk]
−0.6 0.361 1.024 0.663 0.159
−0.3 1.024 1.183 0.159 −0.183 f ′ changes sign
0.0 1.183 1.000 −0.183 −0.363 near xk

0.3 1.000 0.637 −0.363 −0.381
0.6 0.637 0.256 −0.381 −0.237 f ′ changes sign
0.9 0.256 0.019 −0.237 0.069 near xk

1.2 0.019 0.088 0.069 0.537
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Figure 1.10 The graph of the cubic polynomial y = x3 − x2 − x + 1.

Example 1.9. Find the approximate location of the roots of x3 − x2 − x + 1 = 0
on the interval [−1.2, 1.2]. For illustration, choose N = 8 and look at Table 1.3.

The three abscissas for consideration are −1.05, 0.3, and 0.9. Because f(x) changes
sign on the interval [−1.2, 0.9], the value 1.05 is an approximate root; indeed, f(−1.05) =
0.210.

Although the slope changes sign near −0.3, we find that f(−0.3) = 1.183; hence
−0.3 is not near a root. Finally, the slope changes sign near 0.9 and f(0.9) = 0.019,
so 0.9 is an approximate root (see Figure 1.10).
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Figure 1.11 (a) The horizontal convergence band for locating a solution to f(x) =
0.

Figure 1.11 (b) The vertical convergence band for locating a solution to f(x) = 0.

1.3.1 Checking for Convergence

A graph can be used to see the approximate location of a root, but an algorithm must
be used to compute a value pn that is an acceptable computer solution. Iteration is
often used to produce a sequence {pk} that converges to a root P, and a termination
criterion or strategy must be designed ahead of time so that the computer will stop
when an accurate approximation is reached. Since the goal is to solve f(x) = 0, the
final value pn should have the property that |f(pn)| < ε.

The user can supply a tolerance value ε for the size of |f(pn)| and then an iterative
process produces points Pk = (pk, f(pk)) until the last point Pn lies horizontal band
bounded by the lines y = +ε and, y = −ε, as shown in Figure 1.11(a). This criterion
is useful if the user is trying to solve h(x) = L by applying a root-finding algorithm to
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the function f(x) = h(x)− L.
Another termination criterion involves the abscissas, and we can try to determine

if the sequence {pk} is converging. If we draw the vertical lines x = p+ δ and x = p− δ
on each side of x = p, we could decide to stop the iteration when the point Pn lies
between these two vertical lines, as shown in Figure 1.11 (b).

The latter criterion is often desired, but it is difficult to implement because it
involves the unknown solution p. We adapt this idea terminate further calculations
when the consecutive iterates pn−1 and pn are sufficiently close or if they agree within
M significant digits.

Sometimes the user of an algorithm will be satisfied if pn ≈ pn−1 and other times
when f(pn) ≈ 0. Correct logical reasoning is required to understand the consequences.
If we require that |pn − p| < δ and |f(pn)| < ε, and |f(pn)| < ε, the point Pn will be
located in the rectangular region about the solution (p, 0), as shown in Figure 1.12 (a).
If we stipulate that pn−p < δ or |f(pn)| < ε, the point pn could be located anywhere in
the region formed by the union of the horizontal and vertical stripes, as shown in Figure
1.12(b). The size of the tolerances δ and ε are crucial. If the tolerances are chosen too
small, iteration may continue forever. They should be chosen about 100 times larger
than 10−M , where M is the number of decimal digits in the computer’s floating-point
numbers. The closeness of the abscissas is checked with one of the criteria

|p0 − pn−1| < δ (estimate for the absolute error)

or
2|pn − pn−1|
|pn|+ |pn−1| < δ (estimate for the relation error)

The closeness of the ordinate is usually checked by |f(pn)| < ε.

1.3.2 Troublesome Function

A computer solution to f(x) = 0 will almost always be in error due to roundoff and/or
instability in the calculations. If the graph y = f(x) is steep near the root (p, 0),
then the root-finding problem is well conditioned (i.e., a solution with several signif-
icant digits is easy to obtain). If the graph y = f(x) is shallow near (p, 0), then the
root-finding problem is ill conditioned (i.e., the computed root may have only a few
significant digits). This occurs when f(x) has a multiple root at p. This is discussed
further in the next section.
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Figure 1.12 (a)The rectangular region defined by |x− p| < δ AND |y| < ε.

Figure 1.12 (b)The unbounded region defined by |x− p| < δ OR y < ε.
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Program 1.4 (Approximate Location of Roots). To roughly estim-
ate the locations of the roots of the equation f(x) = 0 over the interval
[a, b], by using the equally spaced sample points (xk, f(xk)) and the follo-
wing criteria:

(i) (yk−1)(yk) < 0, or
(ii) |yk| < ε and (yk − yk−1(yk+1 − yk) < 0.

That is, either f(xk−1) and f(xk) have opposite signs or |f(xk)| is small
and the slope of the curve y = f(x) changes sign near (xk, f(xk)).

function R = approot (x, epsilon)
% Input − f is the object function saved as an M-file named f.m
% − X is the vector of abscissas
% − epsilon is the tolerance
% Output − R is the vector of approximate roots
Y=f(x);
yrange = max(Y)−min(Y);
epsilon2 = yrange*epsilon;
n=length(X);
m=0;
X(n+1)=X(n);
Y(n+1)=Y(n);
for k=2:n,

if Y(k-1)*Y(k)¡=0,
m=m+1;
R(m)=(X(k-1)+X(b))/2;

end
s=(Y(k)-Y(k-1))*(Y(k+1)-Y(k));
if (abs(Y(k))¡epsilon2)&(s¡=0),

m=m+1;
R(m)=X(k);

end
end

Example 1.10. Use approot to find approximate locations for the roots of f(x) =
sin(cos(x3)) in the interval [−2, 2]. First save f as an M-file named f.m. Since the
results will be used as initial approximations for a root-finding algorithm, we will con-
struct X so that the approximations will be accurate to 4 decimal places.

>>X=−2:.001:2;
>>approot (X,0.00001)
ans=
−1.9875 −1.6765 −1.1625 1.1625 1.6765 1.9875

29



Comparing the results with the graph of f , we now have good initial approximations
for one of our root-finding algorithms.

1.3.3 Exercises for Initial Approximation

In Exercises 1 through 6 use a computer or graphics calculator to graphically determine
the approximate location of the roots of f(x) = 0 in the given interval. In each case,
determine an interval [a, b] over which Programs 1.2 and 1.3 could be used to determine
the roots (i.e., f(a)f(b) < 0).

1. f(x) = x2 − ex for −2 ≤ x ≤ 2

2. f(x) = x− cos(x) for −2 ≤ x ≤ 2

3. f(x) = sin(x)− 2 cos(x) for −2 ≤ x ≤ 2

4. f(x) = cos(x) + (1 + x2)−1 for −2 ≤ x ≤ 2

5. f(x) = (x− 2)2 − ln(x) for 0.5 ≤ x ≤ 4.5

6. f(x) = 2x− tan(x) for −1.4 ≤ x ≤ 1.4

1.3.4 Algorithms and Programs

In Problems 1 and 2 use a computer or graphics calculator and Program 1.4 to ap-
proximate the real roots, to 4 decimal places, of each function over the given interval.
Then use Program 1.2 or Program 1.3 to approximate each root to 12 decimal places.

1. f(x) = 1, 000, 000x3 − x3 − 111, 000x2 + 1110x for −2 ≤ x ≤ 2

2. f(x) = 5x10 − 38x9 + 21x8 − 5πx6 − 3πx5 − 5x2 + 8x− 3 for −15 ≤ x ≤ 15.

3. A computer program that plots the graph of y = f(x) over the interval [a, b]
using the points (x0, y0), (x1, y1), . . ., and (xN , yN) usually scales the vertical
height of the graph, and a procedure must be written to determine the minimum
and maximum values of f over the interval.
(a) Construct an algorithm that will find the values Ymax = maxk{yk} and Ymin

= mink{yk}.
(b) Write a MATLAB program that will find the approximate location and value

of the extreme values of f(x) on the interval [a, b].
(c) Use your program from part (b) to find the approximate location and value

of the extreme values of the functions in Problems 1 and 2. Compare your
approximations with the actual values.
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1.4 Newton-Raphson and Secant Methods

1.4.1 Slope Methods for Finding Roots

If f(x), f ′(x), and f ′′(x) are continuous near a root p, then this extra information
regarding the nature of f(x) can be used to develop algorithms that will produce
sequenced {pk} that converge faster to p than either the bisection of false position
method. The Newton-Raphson(or simply Newton’s) method is one of the most useful
and best known algorithms that relies on the continuity of f ′(x) and f ′′(x). We shall
introduce it graphically and then give a more rigorous treatment based on the Taylor
polynomial.

Assume that the initial approximation p0 is near the root p. Then the graph of
y = f(x) intersects the x -axis at the point (p, 0), and the point (p0, f(p0)) lies on the
curve neat the point (p, 0) (see Figure 1.13). Define p1 to be the point of intersection
of the x -axis and the line tangent to the curve at the point (p0, f(p0)). Then Figure
1.13 shows that p1 will be closer to p than p0 in this case. An equation relating p1 and
p0 can be found if we write down two versions for the slope of the tangent line L;

m =
0− f(p0)

p1 − p0

, (1.37)

which is the slope of the line through (p1, 0) and (p0, f(p0)), and

m = f ′(p0), (1.38)

which is the slope at the point (p0, f(p0)). Equating the values of the slope m in
equations (1.37) and (1.38) and solving for p1 results in

p1 = p0 − f(p0)

f ′(p0)
. (1.39)

Figure 1.13 The geometric construction of p1 and p2

for the Newton-Raphson method.
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The process above can be repeated to obtain a sequence {pk} that converges to p.
We now make these ideas more precise.

Theorem 1.5 (Newton-Raphson Theorem). Assume that f ∈ C2[a, b] and there
exists a number p ∈ [a, b], where f(p) = 0. If f ′(p) 6= 0, then there exists a δ > 0 such
that the sequence {pk}∞k=0 defined by the iteration

pk = g(pk−1) = pk−1 − f(pk−1)

f ′(pk−1)
for k = 1, 2, . . . (1.40)

will converge to p for any initial approximation p0 ∈ [p− δ, p + δ].
Remark. The function g(x) defined by formula

g(x) = x− f(x)

f ′(x)
(1.41)

is called the Newton-Raphson iteration function . Since f(p) = 0, it is easy to see
that g(p) = p. Thus the Newton-Raphson iteration for finding the root of the equation
f(x) = 0 is accomplished by finding a fixed point the function g(x).

Proof. The geometric construction of p1 shown in Figure 1.13 does not help in un-
derstanding why p0 needs to be close to p or why the continuity of f ′′(x) is essential.
Our analysis starts with the Taylor polynomial of degree n = 1 and its remainder term:

f(x) = f(p0) + f ′(p0)(x− p0) +
f ′′(c)(x− p0)

2

2!
. (1.42)

where c lies somewhere between p0 and x. Substituting x = p into equation (1.42) and
using the fact that f(p) = 0 produces

0 = f(p0) + f ′(p0)(p− p0) +
f ′′(c)(p− p0)

2

2!
(1.43)

If p0 is close enough to p, the last term on the right side of (1.43) will be small
compared to the sum of the first two terms. Hence it can be neglected and we can use
the approximation

0 ≈ f(p0) + f ′(p0)(p− p0). (1.44)

Solving for p in equation (1.44), we get p ≈ p0 − f(p0)/f
′(p0). This is used to define

the next approximation p1 to the root

p1 = p0 − f(p0)

f ′(p0)
. (1.45)

When pk−1 is used in place of p0 in equation (1.45), the general rule (1.40) is estab-
lished. For most applications this is all that needs to be understood. However, to fully
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comprehend what is happening, we need to consider the fixed-point iteration function
and apply Theorem 1.2 in our situation.The key is in the analysis of g′(x):

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

(f ′(x))2
=

f(x)f ′′(x)

(f ′(x))2
.

By hypothesis, f(p) = 0; thus g′(p) = 0. Since g′(p) = 0 and g′(x) is continuous, it is
possible to find a δ > 0 so that the hypothesis |g′(x)| < 1 of Theorem 1.2 is satisfied on
(p− δ, p+ δ). Therefore, a sufficient condition for p0 to initialize a convergent sequence
{pk}∞k=0, which converges to a root of f(x) = 0, is that p0 ∈ (p − δ, p + δ) and that δ
be chosen so that

|f(x)f ′′(x)|
|f ′(x)|2 < 1 for all x ∈ (p− δ, p + δ) (1.46)

Corollary 1.2 (Newton’s Iteration for Finding Square Roots). Assume that
A > 0 is a real number and let p0 > 0 be an initial approximation to

√
A. Define the

sequence {pk}∞k=0 using the recursive rule.

pk =
pk−1 + A

pk−1

2
for k = 1, 2, . . . . (1.47)

Then the sequence {pk}∞k=0 converges to
√

A; that is, limn→∞ pk =
√

A.
Outline of Proof. Start with the function f(x) = x2 − A, and notice that the roots of
the equation x2 − A = 0 are ±√A. Now use f(x) and the derivative f ′(x) in formula
(1.41) and write down the Newton-Raphson iteration formula

g(x) = x− f(x)

f ′(x)
= x− x2 − A

2x
. (1.48)

This formula can be simplified to obtain

g(x) =
x + A

x

2
. (1.49)

When g(x) in (1.49) is used to define the recursive iteration in (1.30), the result is
formula (1.47). It can be proved that the sequence that is generated in (1.47) will
converge for any starting value p0 > 0. The details are left for the exercises.

An important point of Corollary 1.2 is the fact that the iteration function g(x)
involved only the arithmetic operations +,−,×, and /. If g(x) had involved the calcu-
lation of a square root, we would be caught in the circular reasoning that being able to
calculate the square root would permit you to recursively define a sequence that will
converge to

√
A. For this reason, f(x) = x2 − A was chosen, because it involved only

the arithmetic operations.
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Example 1.11. Use Newton’s square-root algorithm to find
√

5.
Starting with p0 = 2 and using formula(1.47), we compute

p1 =
2 + 5/2

2
= 2.25

p2 =
2.25 + 5/2.25

2
= 2.236111111

p3 =
2.236111111 + 5/2.236111111

2
= 2.236067978

p4 =
2.36067978 + 5/2.236067978

2
= 2.236067978.

Further iterations produce pk ≈ 2.236067978 for k > 4, so we see that convergence
accurate to nine decimal places hes been achieved.

Now let us turn to a familiar problem from elementary physics and see why deter-
mining the location of a root is an important task. Suppose that a projectile is fired the
origin with an angle of elevation b0 and initial velocity v0. In elementary courses, air
resistance is neglected and we learn that the height y = y(t) and the distance traveled
x = x(t), measured in feet, obey the rules

y = vyt− 16t2 and x = vxt, (1.50)

where the horizontal and vertical components of the initial velocity are vx = v0 cos(b0)
and vy = v0 sin(b0), respectively. The mathematical model expressed by the rules in
(1.50) is easy to work with, but tends to give too high an altitude and too long a range
for the projectile’ s path. If we make the additional assumption that the air resistance
is proportional to the velocity, the equations of motion become

y = f(t) = (Cvy + 32C2)(1− e−t/C)− 32Ct (1.51)

and
x = r(t) = Cvx(1− e−t/C), (1.52)

where C = m/k and k is the coefficient of air resistance and m is the mass of the
projectile. A larger value of C will result in a higher maximum altitude and a longer
range for the projectile. The graph of a flight path of a projectile when air resistance is
considered is shown in Figure 2.14. This improved model is more realistic, but requires
the use of a root-finding algorithm for solving f(t) = 0 to determine the elapsed time
until the projectile his the ground. The elementary model in (1.50) does not require a
sophisticated procedure to find the elapsed time.
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Figure 1.14 Path of a projectile with air resistance considered.

Table 1.4 Finding the Time When the Height f(t) Is Zero

k Time, pk pk+1 − pk Height, f(pk)
0 8.00000000 0.79773101 83.22097200
1 8.79773101 −0.05530160 −6.68369700
2 8.74242941 −0.00025475 −0.03050700
3 8.74217467 −0.00000001 −0.00000100
4 8.74217466 0.00000000 0.00000000

Example 1.12. A projectile is fired with an angle of elevation b0 = 45◦, vy = vx =
160ft/sec, and C = 10. Find the elapsed time until impact and find the range.

Using formulas (1.51) and (1.52), the equations of motion are y = f(t) = 4800(1−
e−t/10) − 320t and x = r(t) = 1600(1 − e−t/10). Since f(8) = 83.220972 and f(9) =
−31.534367, we will use the initial guess p0 = 8. The derivative is f ′(t) = 480e−t/10 −
320, and its value f ′(p0) = f ′(8) = −104.3220972 is used in formula (1.40) to get

p1 = 8− 83.22097200

−104.3220972
= 8.797731010.

A summary of the calculation is given in Table 1.4.
The value p4 has eight decimal places of accuracy, and the time until impact is

t ≈ 8.74217466 seconds. The range can now be computed using r(t); and we get

r(8.74217466) = 1600(1− e−0.847217466) = 932.4986302ft.

1.4.2 The Division-by-Zero Error

One obvious pitfall of the Newton-Raphson method is the possibility of division by
zero in formula (1.40), which would occur if f ′(pk−1) = 0. Program 1.5 has a procedure
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to check for this situation, but what use is the last calculated approximation pk−1 in
this case? It is quite possible that f(pk−1) is sufficiently close to zero and that pk−1 is
an acceptable approximation to the root. We now investigate this situation and will
uncover an interesting fact, that is, how fast the iteration converges.

Definition 1.4 (Order of a Root). Assume that f(x) and its derivatives f ′(x),
. . . , f (M)(x) are defined and continuous on an interval about x = p. We say that
f(x) = 0 has a root of order M at x = p if and only if

f(p) = 0, f ′(p), . . . , f (M−1)(p) = 0, and f (M)(p) 6= 0. (1.53)

A root of order M = 1 is often called a simple root , and if M > 1, it is called a
multiple root . A root of order M = 2 is sometimes called a double root , and so on.
The next result will illuminate these concepts.

Lemma 1.1. If the equation f(x) = 0 has a root of order M at x = p, then there
exists a continuous function h(x) so that f(x) can be expressed as the product

f(x) = (x− p)Mh(x), where h(p) 6= 0. (1.54)

Example 1.13. The function f(x) = x3 − 3x + 2 has a simple root at p = −2 and a
double root at p = 1. This can be verified by considering the derivatives f ′(x) = 3x2−3
and f ′′(x) = 6x. At the value p = −2, we have f(−2) = 0 and f ′(−2) = 9, so M = 1
in Definition 1.4; hence p = −2 is a simple root. For the value p = 1, we have
f(1) = 0, f ′(1) = 0, and f ′′(1) = 6, so M = 2 in Definition 1.4; hence p = 1 is a double
root. Also, notice that f(x) has the factorization f(x) = (x + 2)(x− 1)2.

1.4.3 Speed of Convergence

The distinguishing property we seek is the following. If p is a simple root of f(x) = 0,
Newton’s method will converge rapidly, and the number of accurate decimal places
(roughly) doubles with each iteration. On the other hand, if p is a multiple root, the
error in each successive approximation is a fraction of the previous error. To make
this precise, we define the order of convergence . The is a measure of how rapidly
a sequence converges.

Definition 1.5 (Order of Convergence). Assume that {pn}∞n=0 converges to p
and set En = p− pn for n ≥ 0. If two positive constants A 6= 0 and R > 0 exist, and

lim
n→∞

|p− pn+1|
|p− pn|R = lim

n→∞
|En+1|
|En|R = A. (1.55)
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Table 1.5 Newton’s Method Converges Quadratically at a Simple Root

k pk pk+1 − pk Ek = p− pk
|Ek+1|
|Ek|2

0 −2.400000000 0.323809524 0.400000000 0.476190475
1 −2.076190476 0.072594465 0.076190476 0.619469086
2 −2.003596011 0.003587422 0.003596011 0.664202613
3 −2.000008589 0.000008589 0.000008589
4 −2.000000000 0.000000000 0.000000000

then the sequence is said to converge to p with order of convergence R. The num-
ber A is called the asymptotic error constant. The cases R = 1, 2 are given special
consideration.

If R = 1, the convergence of {pn}∞n=0 is called linear (1.56)

If R = 1 , the convergence of {pn}∞n=0 is called quadratic. (1.57)

If R is large, the sequence {pn} converges rapidly to p; that is, relation (1.55) implies
that for large values of n we have the approximation |En+1| ≈ A|En|R. For example,
suppose that R = 2 and |En| ≈ 10−2; then we would expect that |En+1| ≈ A× 10−4.

Some sequences converge at a rate that is not an integer, and we will see that the
order of convergence of the secant method is R = (1 +

√
5)/2 ≈ 1.618033989.

Example 1.14 (Quadratic Convergence at a Simple Root). Start with p0 =
−2.4 and use Newton-Raphson iteration to find the root p = −2 of the polynomial
f(x) = x3 − 3x + 2. The iteration formula for computing {pk} is

pk = g(pk−1) =
2p3

k−1 − 2

3p2
k−1 − 3

. (1.58)

Using formula (1.55) to check for quadratic convergence, we get the values in Table
1.5.

A detailed look at the rate of convergence in Example 1.14 will reveal that the error
in each successive iteration is proportional to the square of the error in the previous
iteration. That is,

|p− pk+1| ≈ A|p− pk|2,
where A ≈ 2/3. To check this. we use

|p− p3| = 0.000008589 and |p− p2|2 = |0.003596011|2 = 0.000012931

and it is easy to see that

|p− p3| = 0.000008589 ≈ 0.000008621 =
2

3
|p− p2|2.
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Table 1.6 Newton’ Method Converges Linearly at a Double Root

k pk pk+1 − pk Ek = p− pk
|Ek+1|
|Ek|

0 1.200000000 −0.096969697 −0.200000000 0.515151515
1 1.103030303 −0.050673883 −0.103030303 0.508165253
2 1.052356420 −0.025955609 −0.052356420 0.496751115
3 1.026400811 −0.013143081 −0.026400811 0.509753688
4 1.013257730 −0.006614311 −0.013257730 0.501097775
5 1.006643419 −0.003318055 −0.006643419 0.500550093
...

...
...

...
...

Example 1.15 (Linear Convergence at a Double Root). Start with p0 = 1.2
and use Newton-Raphson iteration to find the double root p = 1 of the polynomial
f(x) = x3 − 3x + 2.

Using formula (1.56) to check for linear convergence, we get the values in Table 1.6.
Notice that the Newton-Raphson method is converging to the double root, but at

a slow rate. The values of f(pk) in Example 1.15 go to zero faster than the values
of f ′(pk), so the quotient f(pk)/f

′(pk) in formula (1.40) is defined when pk 6= p. The
sequence is converging linearly, and the error is decreasing by a factor of approximately
1/2 with each successive iteration. The following theorem summarizes the performance
of Newton’s method on simple and double roots.

Theorem 1.6 (Convergence Rate for Newton-Raphson Iteration). Assume
that Newton-Raphson iteration produces a sequence {pn}∞n=0 that converges to the
root p of the function f(x). If p is a simple root, convergence is quadratic and

|En+1| ≈ |f ′′(p)|
2|f ′(p)| |En|2 for n sufficiently large. (1.59)

If p is a multiple root of order M, convergence is linear and

|En+1| ≈ M − 1

M
|En| for n sufficiently large. (1.60)

1.4.4 Pitfalls

The division-by-zero error was easy to anticipate, but there are other difficulties that
are not so easy to spot. Suppose that the function is f(x) = x2 − 4x + 5; then the
sequence {pk} of real numbers generated by formula (1.37) will wander back and forth
from left to right and not converge. A simple analysis of the situation reveals that
f(x) > 0 and has no real roots.
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Figure 1.15 (a)Newton-Raphson iteration for f(x) = xex

can produce a divergent sequence.

Sometimes the initial approximation p0 is too far away from the desired root and the
sequence {pk} converges to some other root. This usually happens when the slope f ′(p0)
is small and the tangent line to the curve y = f(x) is nearly horizontal. For example, if
f(x) = cos(x) and we seek the root p = π/2 and start with p0 = 3, calculation reveals
that p1 = −4.01525255, p2 = −4.85265757, · · ·, and {pk} will converge to a different
root −3π/2 ≈ −4.71238898.

Suppose that f(x) is positive and monotone decreasing on the unbounded interval
[a,∞] and p0 > a; then the sequence {pk} might diverge to +∞. For example, if
f(x) = xe−x and p0 = 2.0, then

p1 = 4.0, p2 = 5.333333333, . . . , p15 = 19.723549434, . . . ,

and {pk} diverges slowly to +∞ (see Figure 1.15(a)). This particular function has
another surprising problem. The value of f(x) goes to zero rapidly as x gets large,
for example, f(p15) = 0.0000000536, and it is possible that p15 could be mistaken for
a root. For this reason we designed stopping criterion in Program 1.5 to involve the
relative error 2|pk+1 − pk|/(|pk| + 10−6), and when k = 15, this value is 0.106817, so
the tolerance δ = 10−6 will help guard against reporting a false root.

Another phenomenon, cycling, occurs when the terms in the sequence {pk} tend
to repeat ro almost repeat. For example, if f(x) = x3−x−3 and initial approximation
is p0 = 0, then the sequence is

p1 = −3.000000, p2 = −1.961538, p3 = −1.147176, p4 = −0.006579,

p5 = −3.000389, p6 = −1.961818, p7 = −1.1474430, . . .

and we are stuck in a cycle where pk+4 ≈ pk for k = 0, 1, . . . (see Figure 1.15(b)). But
if the starting value p0 is sufficiently close to the root p ≈ 1.671699881, then {pk}
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Figure 1.15 (b)Newton-Raphson iteration for f(x) =
x3 − x− 3 can produce a cyclic sequence.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

y=arctan(x) 

p
3
 p

1
 1 

p
0
 

2 

Figure 1.15 (c)Newton-Raphson iteration for f(x) =
arctan(x) can produce a divergent sequence.

converges. If p0 = 2, the sequence converges: p1 = 1.72727272, p2 = 1.67369173, p3 =
1.671702570, and p4 = 1.671699881.

When |g′(x)| ≥ 1 on an interval containing the root p, there is a chance of divergent
oscillation. For example, let f(x) = arctan(x); then the Newton-Raphson iteration
function is g(x) = x − (1 + x2) arctan(x), and g′(x) = −2x arctan(x). If the starting
value p0 = 1.45 is chosen, then

p1 = −1.550263297, p2 = 1.845931751, p3 = −2.889109054,

etc, (see Figure 1.15(c)). But if the starting value is sufficiently close to the root p = 0,
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Figure 1.16 The geometric construction of p2 for the
secant method.

a convergent sequence results. If p0 = 0.5, then

p1 = −0.079559511, p2 = 0.000335302, p3 = 0.000000000.

The situations above point to the fact that we must be honest in reporting an
answer. Sometimes the sequence does not converge. It is not always the case that
after N iterations a solution is found. The user of a root-finding algorithm needs to
be warned of the situation when a root is not found. If there is other information
concerning the context of the problem, then it is less likely that an erroneous root will
be found. Sometimes f(x) has a definite interval in which a root is meaningful. If
knowledge of the behavior of the function or an ”accurate” graph is available, then it
is easier to choose p0.

1.4.5 The Secant Method

The Newton-Raphson algorithm requires the evaluation of two functions per iteration,
f(pk−1) and f ′(pk−1). Traditionally, the calculation of derivatives of elementary func-
tions could involve considerable effort. But, with modern computer algebra software
packages, this has become less of an issue. Still many functions have nonelementary
forms (integrals, sums, etc.), and it is desirable to have a method that converges almost
as fast as Newton’s method yet involves only evaluation of f(x) and not of f ′(x). The
secant method will require only one evaluation of f(x) per step and at a simple root
has an order of convergence R ≈ 1.618033989. It is almost as fast as Newton’s method,
which has order 2.

The formula involved in the secant method is the same one that was used in the
regula falsi method, except that the logical decisions regarding how to define each
succeeding term are different. Two initial points (p0, f(p0)) and (p1, f(p1)) near the
point (p, 0) are needed, as shown in Figure 1.16. Define p2 to be the abscissa

Table 1.7 Convergence of the Secant Method at a Simple Root
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k pk pk+1 − pk Ek = p− pk
|Ek+1|
|Ek|1.618

0 −2.600000000 0.200000000 0.600000000 0.914152831
1 −2.400000000 0.293401015 0.400000000 0.469497765
2 −2.106598985 0.083957573 0.106598985 0.847290012
3 −2.022641412 0.021130314 0.022641412 0.693608922
4 −2.001511098 0.001488561 0.001511098 0.825841116
5 −2.000022537 0.000022515 0.000022537 0.727100987
6 −2.000000022 0.000000022 0.000000022
7 −2.000000000 0.000000000 0.000000000

of the point of intersection of the line through these tow points and the x -axis; then
Figure 1.16 shows that p2 will be closer to p than to either p0 or p1. The equation
relating p2, p1, and p0 is found by considering the slope

m =
f(p1)− f(p0)

p1 − p0

and m =
0− f(p1)

p2 − p1

. (1.61)

The values of m in (1.61) are the slope of the secant line through the first two approx-
imations and the slope of the line through (p1, f(p1)) and (p2, 0), respectively. Set the
right-hand sides equal in (1.61) and solve for p2 = g(p1, p0) and get

p2 = g(p1, p0) = p1 − f(p1)(p1 − p0)

f(p1)− f(p0)
. (1.62)

The general term is given by the two-point iteration formula

pk+1 = g(pk, pk−1) = pk − f(pk)(pk − pk1)

f(pk)− f(pk−1)
. (1.63)

Example 1.16 (Secant Method at a Simple Root). Start with p0 = −2.6 and
p1 = −2.4 and use the secant method to find the root p = −2 of polynomial function
f(x) = x3 − 3x + 2.

In this case the iteration formula (1.63) is

pk+1 = g(pk, pk−1) = pk − (p3
k − 3pk + 2)(pk − pk−1)

p3
k − p3

k−1 − 3pk + 3pk−1

. (1.64)

This can be algebraically manipulated to obtain

pk+1 = g(pk, pk−1) =
p2

kpk−1 + pkp
2
k−1 − 2

p2
k + pkpk−1 + p2

k−1 − 3
. (1.65)

The sequence of iterates is given in Table 1.7.
There is a relationship between the secant method and Newton’s method. For a

polynomial function f(x), the secant method two-point formula pk+1 = g(pk, pk−1) will

42



reduce to Newton’s one-point formula pk+1 = g(pk) if pk is replaced by pk−1. Indeed,
if we replace pk by pk−1 in (1.65) , then the right side becomes the same as the right
side of (1.58) in Example 1.14.

Proofs about the fate of convergence of the secant method can be found in advanced
texts on numerical analysis. Let us state that the error terms satisfy the relationship

|Ek+1| ≈ |Ek|1.618

∣∣∣∣∣
f ′′(p)

2f ′(p)

∣∣∣∣∣
0.618

, (1.66)

where the order of convergence is R = (1 +
√

5)/2 ≈ 1.618 and the relation in (1.66) is
valid only at simple roots.

To check this, we make use of Example 1.16 and the specific values

|p− p5| = 0.000022537

|p− p4|1.618 = 0.0015110981.618 = 0.000027296.

and

A = |f ′′(−2)/2f ′(−2)|0.618 = (2/3)0.618 = 0.778351205.

Combine these and it is easy to see that

|p− p5| = 0.000022537 ≈ 0.000021246 = A|p− p4|1.618.

1.4.6 Accelerated Convergence

We could hope that there are root-finding techniques that converge faster than linearly
when p is a root of order M. Our final result shows that a modification can be made
to Newton’s method so that convergence becomes quadratic at a multiple root.

Theorem 1.7 (Acceleration of Newton-Raphson Iteration). Suppose that the
Newton-Raphson algorithm produces a sequence that converges linearly to the root
x = p of order M > 1. Then the Newton-Raphson iteration formula

pk = pk−1 − Mf(pk−1)

f ′(pk−1)
(1.67)

will produce a sequence {pk}∞k=0 that converges quadratically to p.

Table 1.8 Acceleration of Convergence at a Double Root
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k pk pk+1 − pk Ek = p− pk
|Ek+1|
|Ek|2

0 1.200000000 −0.193939394 −0.200000000 0.151515150
1 1.006060606 −0.006054517 −0.006060606 0.165718578
2 1.000006087 −0.000006087 −0.000006087
3 1.000000000 0.000000000 0.000000000

Table 1.9 Comparison of the speed of Convergence

Method Special considerations
Relation between
Successive error terms

Bisection Ek+1 ≈ 1
2
|Ek|

Regula falsi Ek+1 ≈ A|Ek|
Secant method Multiple root Ek+1 ≈ A|Ek|
Newton-Raphson Multiple root Ek+1 ≈ A|Ek|
Secant method Simple root Ek+1 ≈ A|Ek|1.618

Newton-Raphson Simple root Ek+1 ≈ A|Ek|2
Accelerated
Newton-Raphson

Multiple root Ek+1 ≈ A|Ek|2

Example 1.17 (Acceleration of Convergence at a Double Root). Start with
p0 = 1.2 and use accelerated Newton-Raphson iteration to find the double root p = 1
of f(x) = x3 − 3x + 2.

Since M = 2, the acceleration formula (1.67) becomes

pk = pk−1 − 2
f(pk−1)

f ′(pk−1)
=

p3
k−1 + 3pk−1 − 4

3p2
k−1 − 3

,

and we obtain the values in Table 1.8.
Table 1.9 compares the speed of convergence of the various root-finding methods

that we have studied so far. The value of the constant A is different for each method.
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Program 1.5 (Newton-Raphson Iteration). To approximate a root of f(x) = 0 given
one initial approximation p0 and using the iteration

pk = pk−1 − f(pk−1)
f ′(pk−1)

for k = 1, 2, . . . .

Function [p0,err,k,y]=Newton (f,df,p0,delta,epsilon,max1)
%Input − f is the object function input as a string ’f’
% − df is the derivative of f input as a string ’df’
% − p0 is the initial approximation to a zero of f
% − delta is the tolerance for p0
% − epsilon is the tolerance for the function values y
% − max1 is the maximum number of iterations
%Output− p0 is the Newton-Raphson approximation to the zero
% − err is the error estimate for p0
% − k is the number of iterations
% − y is the function value f(p0)
for k=1:max1

p1=p0-feval(f,p0)/feval(df,p0);
err=abs(p1-p0);
relerr=2*err/(abs(p1)+delta)
p0=p1;
y=feval(f,p0);
if (err<delta)|(relerr<delta)|(abs(y)<epsilon),break,end

end

Program 1.6 (Secant Method). To approximate a root of f(x) = 0 given two
initial approximations p0 and p1 and using the iteration

pk+1 = pk − f(pk)(pk−pk−1)
f(pk)−f(pk−1)

for k = 1, 2, . . . .

Function [p1,err,k,y]=secant(f,p0,delta,epsilon,max1)
%Input − f is the object function input as a string ’f’
% − p0 and p1 are the initial approximations to a zero
% − delta is the tolerance for p1
% − epsilon is the tolerance for the function values y
% − max1 is the maximum number of iterations
%Output− p1 is the secant method approximation to the zero
% − err is the error estimate for p1
% − k is the number of iterations
% − y is the function value f(p1)
for k=1:max1
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p2=p1−feval(f,p1)*(p1−p0)/(feval (f,p1)−feval(f,p0));
err=abs(p2-p1);
relerr=2*err/(abs(p2)+delta);
y=feval(f,p1);
if (err<delta) | (relerr<delta) | (abs(y)<epsilon), break,end

end

1.4.7 Exercises for Newton-Raphson and Secant Methods

For problems involving calculations, you can use either a calculator or computer.
1. Let f(x) = x2 − x + 2

(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) Start with p0 = −1.5 and find p1, p2, and p3.

2. Let f(x) = x2 − x− 3.
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) Start with p0 = 1.6 and find p1, p2, and p3.
(c) Start with p0 = 0.0 and find p1, p2, p3, and p4. What do you

conjecture about this sequence?

3. Let f(x) = (x− 2)4.
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) Start with p0 = 2.1 and find p1, p2, p3, and p4.
(c) Is the sequence converging quadratically or linearly?

4. Let f(x) = x3 − 3x− 2.
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) Start with p0 = 2.1 and find p1, p2, p3, and p4.
(c) Is the sequence converging quadratically or linearly?

5. Consider the function f(x) = cos(x).
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) We want to find the root p = 3π/2. Can we use p0 = 3? Why?
(c) We want to find the root p = 3π/2. Can we use p0 = 5? Why?

6. Consider the function f(x) = arctan(x).
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) If p0 = 1.0, the find p1, p2, p3, and p4. What is limn→∞ pk?
(c) If p0 = 2.0, then find p1, p2, p3, and p4. What is limn→∞ pk?
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7. Consider the function f(x) = xe−x.
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) If p0 = 0.2, then find p1, p2, p3, and p4. What is limn→∞ pk?
(c) If p0 = 20, then find p1, p2, p3, and p4. What is limn→∞ pk?
(d) What is the value of f(p4) in part(c)?

In Exercises 8 through 10, use the secant method and formula (1.59) and compute the
next two iterates p2 and p3.

8. Let f(x) = x2 − 2x− 1. Start with p0 = 2.6 and p1 = 2.5.

9. Let f(x) = x2 − x− 3. Start with p0 = 1.7 and p1 = 1.67.

10. Let f(x) = x3 − x + 2. Start with p0 = 1.5 and p1 = 1.52.
11. Cube-root algorithm. Start with f(x) = x3 − A, where A is any real

number, and derive the recursive formula

pk =
2pk−1 + A/p2

k−1

3
for k = 1, 2, . . . .

12. Consider f(x) = xN − A, where N is a positive integer.
(a) What real values are the solution to f(x) = 0 for the various choices

of N and A that and can arise?
(b) Derive the recursive formula for finding the Nth root of A.

13. Can Newton-Raphson iteration be used to solve f(x) = 0 if f(x) =
x2 − 14x + 50? Why?

14. Can Newton-Raphson be used to solve f(x) = 0 if f(x) = x1/3?
Why?

15. Can Newton-Raphson be used to solve f(x) = 0 if f(x) = (x− 3)1/2

and the starting value is p0 = 4? Why?
16. Establish the limit of the sequence in (11).
17. Prove that the sequence {pk} in equation (4) of Theorem 1.5 con-

verges to p. Use the following steps.
(a) Show that if p is a fixed point of g(x) in equation (5) then p is a

zero of f(x).
(b) If p is a zero of f(x) and f ′(p) 6= 0, show that g′(x) = 0. Use

part (b) and Theorem 1.3 to show that the sequence {pk} in equa-
tion (4) converges to p.

18. Prove equation (1.55) of Theorem 1.6. Use the following steps. By
Theorem 0.11, we can expand f(x) about x = pk to get

f(x) = f(pk) + f ′(pk)(x− pk) +
1

2
f ′′(ck)(x− pk)

2.

47



Since p is zero of f(x), we set x = p and obtain

f(p) = f(pk) + f ′(pk)(p− pk) +
1

2
f ′′(ck)(p− pk)

2.

(a) Now assume that f ′(x) 6= 0 for all x near the root p. Use the facts given above
and f ′(pk) 6= 0 to show that

p− pk +
f(pk)

f ′(pk)
=
−f ′′(ck)

2f ′(pk)
(p− pk)

2.

(b) Assume that f ′(x) and f ′′(x) do not change too rapidly so that we can use the
approximations f ′′(pk) ≈ f ′(p) and f ′′(ck) ≈ f ′′(p). Now use part (a) to get

Ek+1 ≈ −f ′′(p)

2f ′(p)
E2

k .

19. Suppose that A is a positive real number.
(a) Show that A has the representation A = q × 22m, where 1/4 ≤ q < 1 and m is

an integer.
(b) Use part (a) to show that the square root is A1/2 = q1/2 × 2m. Remark. Let

p0 = (2p + 1)/3, where 1/4 ≤ q ≤ 1, and use Newton’s formula (1.47). After three
iterations. p3 will be an approximation to q1/2 with a precision of 24 binary digits.
This is the algorithm that is often used in the computer’s hardware to compute square
roots.

20. (a) Show that formula (1.63) for the secant method is algebraically equivalent
to

pk+1 =
pk+1f(pk)− pkf(pk−1)

f(pk)− f(pk−1)
.

(b) Explain why loss of significance in subtraction makes this formula inferior for
computational purposes to the one given in formula (1.63).

21. Suppose that p is a root of order M = 2 for f(x) = 0. Prove that the accelerated
Newton-Raphson iteration

pk = pk−1 − 2f(pk−1)

f ′(pk−1)

converges quadratically (see Exercise 18).
22. Halley’s method is another way to speed up convergence of Newton’s

method. The Halley iteration formula is

g(x) = x− f(x)

f ′(x)

(
1− f(x)f ′′(x)

2(f ′(x))2

)−1

.

The term in brackets is the modification of the Newton-Raphson formula. Halley’s
method will yield cubic convergence (R = 3) at simple zero of f(x).

(a) Start with f(x) = x2 − A and find Halley’s iteration formula g(x) for finding
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√
A. Use p0 = 2 to approximate

√
5 and compute p1, p2, and p3.

(b) Start with f(x) = x3 − 3x + 2 and find Halley’ iteration formula g(x). Use
p0 = −2.4 and compute p1, p2, and p3.

23. A modified Newton-Raphson method for multiple roots. If p is a root of multi-
plicity M , then f(x) = (x− p)Mq(x), where q(p) 6= 0.

(a) Show that h(x) = f(x)/f ′(x) has a simple root at p.
(b) Show that when the Newton-Raphson method is applied to finding the simple

root p of h(x) we get g(x) = x− h(x)/h′(x), which becomes

g(x) = x− f(x)f ′(x)

(f ′(x))2 − f(x)f ′′(x)
.

(c) The iteration using g(x) in part (b) converges quadratic ally to p. Explain why
this happens.

(d) Zero is a root of multiplicity 3 for the function f(x) = sin(x3). Start with
p0 = 1 and compute p1, p2, and using the modified Newton-Raphson method.

24. Suppose that an iterative method for solving f(x) = 0 produce the following
four consecutive error terms (see Example 1.11): E0 = 0.400000, E1 = 0.043797,
E2 = 0.000062, and E3 = 0.000000. Estimate the asymptotic error constant A
and the order of convergence R of the sequence generated by the iterative method.

1.4.8 Algorithms and Programs

1. Modify Programs 1.5 and 1.6 to display an appropriate error message when
(i) division by zero occurs in (4) or (27), respectively, or (ii) the maximum number
of iterations, max1, exceeded.

2. It is often instructive to display the terms in the sequences generated by (1.40)
and (1.63) (i.e., the second column of Table 1.4) Modify Programs 1.5 and 1.6 to
display the sequences generated by (1.40) and (1.63), respectively.

3. Modify Program 1.5 to use Newton’s square-root algorithm to approximate each
of the following square roots to 10 decimal places.

(a) Start with p0 = 3 and approximate
√

8.
(b) Start with p0 = 10 and approximate

√
91.

(c) Start with p0 = −3 and approximate −√8.
4. Modify Program 1.5 to use the cube-root algorithm in Exercise 11 to
approximate each of the following cube roots to 10 decimal places.
(a) Start with p0 = 2 and approximate 71/3

(b) Start with p0 = 6 and approximate 2001/3

(c) Start with p0 = −2 and approximate (−7)1/3.
5. Modify Program 1.5 to use the accelerated Newton-Raphson algorithm in The-

orem 1.7 to find the root p of order M of each of the following functions.
(a) f(x) = (x− 2)5,M = 5, p = 2; start with p0 = 1.
(b) f(x) = sin(x3),M = 5, p = 0; start with p0 = 1.
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(c) f(x) = (x− 1) ln(x),M = 2, p = 1; start with p0 = 2.
6. Modify Program 1.5 to use Halley’s method in Exercise 22 to find the simple

zero of f(x) = x3 − 3x + 2, using p0 = −2.4.
7. Suppose that the equations of motion for a projectile are

y = f(t) = 9600(1− e−t/15)− 480t

x = r(t) = 2400(1− e−t/15.

(a) Find the elapsed time until impact accurate to 10 decimal places.
(b) Find the range accurate to 10 decimal places
8. (a) Find the point on the parabola y = x2 that is closest to the point (3, 1)

accurate to 10 decimal places.
(b) Find the point on the graph of y = sin(x− sin(x)) that is closest to the point

(2.1, 0.5) accurate to 10 decimal places.
(c) Find the values of at which the minimum vertical distance between the graphs

of f(x) = x2 + 2 and g(x) = (x/5)− sin(x) occurs accurate to 10 decimal places.
9. An open-top box is constructed from a rectangular piece of sheet metal measuring

10 by 16 inches. Squares of what size (accurate to 0.000000001 inch) should be
cut from the corners if the volume of the box is to be 100 cubic inches?

10. A catenary is the curve formed by a hanging cable. Assume that the lowest
point is (0, 0); then the formula for the catenary is y = C cosh(x/C)− C. To
determine the catenary that goes through (±a, b) we must solve the equation
b = C cosh(a/C)− C for C.

(a) Show that the catenary through (±10, 6) is y = 9.1889 cosh(x/9.1889)−9.1889.
(b) Find the catenary that passes through (±12, 5).
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