
Chapter 2

The Solution of Linear Systems
AX = B

2.1 Upper-triangular Linear Systems

We will now develop the back-substitution algorithm, which is useful for solving a lin-
ear system of equations that has an upper-triangular coefficient matrix. This algorithm
will be incorporated in the algorithm for solving a general linear system in Section 2.4.

Definition 2.2. An N × N matrix A = [aij] is called upper triangular provided
that the elements satisfy aij = 0 whenever i > j. The N ×N matrix A = [aij] is called
lower triangular provided that aij = 0 whenever i < j.

We will develop a method for constructing the solution to upper-triangular lin-
ear systems of equations and leave the investigation of lower-triangular systems to
the reader. If A is an upper-triangular matrix, then AX = B is said to an upper-

2

triangular system of linear equations and has the form

a11x1 + a12x2 + a13x3 + · · ·+ a1N−1xN−1 + a1NxN = b1

a22x2 + a23x3 + · · ·+ a2N−1xN−1 + a2NxN = b2

a33x3 + · · ·+ a3N−1xN−1 + a3NxN = b3
...

...
aN−1N−1xN−1 + aN−1NxN = bN−1

aNNxN = bN .

(2.1)

Theorem 2.5 (Back Substitution). Suppose that AX = B is an upper-triangular
system with the form given in (2.1). If

akk 6= 0 for k = 1, 2, · · · , N, (2.2)

then there exists a unique solution to (2.1).

Constructive Proof. The solution is easy to find. The last equation involves only
xN , so we solve it first:

xN =
bN

aNN

. (2.3)

Now xN is known and it can be used in the next-to-last equation:

xN−1 =
bN−1 − aN−1NxN

aN−1N−1

. (2.4)

Now xN and xN−1 are used to find xN−2:

xN−2 =
bN−2 − aN−2N−1xN−1 − aN−2NxN

aN−2N−2

. (2.5)

Once the value xN , xN−1, . . . , xk+1 are known, the general step is

xk =
bk −∑N

j=k+1 akjxj

akk

for k = N − 1, N − 2, . . . , 1. (2.6)

The uniqueness of the solution is easy to see. The N th equation implies that
bN/aNN is the only possible value of xN . Then finite induction is used to establish that
xN−1, xN−2, . . . , x1 are unique.

Example 2.12. Use back substitution to solve the linear system

4x1 − x2 + 2x3 + 3x4 = 20
2x2 + 7x3 − 4x4 = −7

6x3 + 5x4 = −4
3x4 = −6.

3

Solving for x4 in the last equation yields

x4 =
6

3
= 2.

Using x2 in the third equation, we obtain

x3 =
6− 5(2)

6
= −1.

Now x3 = −1 and x4 = 2 are used to find x2 in the second equation:

x2 =
7− 7(−1) + 4(2)

2
= −4.

Finally, x1 is obtained using the first equation:

x1 =
20 + 1(−4)− 2(−1)− 3(2)

4
= 3.

The condition that akk 6= 0 is essential because equation (2.6) involves division by
akk. If this requirement is not fulfilled, either no solution exists or infinitely many
solutions exist.

Example 2.13. Show that there is no solution to the linear system

4x1 − x2 + 2x3 + 3x4 = 20
0x2 + 7x3 − 4x4 = −7

6x3 + 5x4 = −4
3x4 = −6.

(2.7)

Using the last equation in (2.7), we must have x4 = 2, which is substituted into the
second and third equations to obtain

7x3 − 8 = −7
6x3 + 10 = −4.

(2.8)

The first equation in (2.8) implies that x3 = 1/7, and the second equation implies that
x3 = −1. This contradiction leads to the conclusion that there is no solution to the
linear system (2.7).

Example 2.14. Show that there are infinitely many solutions to

4x1 − x2 + 2x3 + 3x4 = 20
0x2 + 7x3 − 0x4 = −7

6x3 + 5x4 = −4
3x4 = −6.

(2.9)

4

Using the last equation in (2.9), we must have x4 = 2, which is substituted into the
second and third equations to get x3 = −1, which checks out in both equations. But
only two values x3 and x4 have been obtained from the second through fourth equations,
and when they are substituted into the first equation of (2.9), the result is

x2 = 4x1 − 16, (2.10)

which has infinitely many solutions: hence (2.9) has infinitely many solutions. If we
choose a value of x1 in (2.10), then the value of x2 is uniquely determined. For example,
if we include the equation x1 = 2 in the system (2.9), then from (2.10) we compute
x2 = −8.

Theorem 2.4 states that the linear system AX = B, where A is an N ×N matrix,
has a unique solution if and only if det(A) 6= 0. The following theorem states that
if any entry on the main diagonal of an upper-or lower-triangular matrix is zero then
det(A) = 0. Thus, by inspecting the coefficient matrices in the previous three exam-
ples, it is clear that the system in Example 3.12 has a unique solution, and the systems
in Examples 2.13 and 2.14 do not have unique solutions. The proof of Theorem 2.6
can be found in most introductory linear algebra textbooks.

Theorem 2.6. If the N ×N matrix A = [aij] is either upper or lower triangular, then

det(A) = a11a22 · · · ann =
N∏

i=1

aii. (2.11)

The value of the determinant for the coefficient matrix in Example 2.12 is det(A) =
4(−2)(6)(3) = −144. The value of the determinants of the coefficient matrices in
Example 2.13 and 2.14 are both 4(0)(6)(3) = 0.

The following program will solve the upper-triangular system (1) by the method of
back substitution, provided akk 6= 0 for k = 1, 2, . . . , N .

Program 2.1 (Back Substitution). To solve the upper-triangular system AX = B
by the method of back substitution. Proceed with the method only if all the diagonal
elements are nonzero. First compute xN = bN/aNN and the use the rule

xk =
bk−

∑
j=k+1

akjxj

akk
k = N − 1, N − 2, . . . , 1.

function X=backsub(A,B)
%Input − A is an n × n upper-triangular nonsingular matrix
% − B is an n × 1 matrix
%Output − X is the solution to the linear system AX=B
%Find the dimension of B and initialize X
n=length(B);
X=zeros(n,1);

5

X(n)=B(n)/A(n,n);
for k=n-1:-1:1

X(k)=(B(k)-A(k,k+1:n)*X(k+1:n))/A(k,k);
end

2.1.1 Exercises for Upper-Triangular Linear Systems

in Exercises 1 through 3, solve the upper-triangular system and find the value of the
determinant of the coefficient matrix.

6

2.2 Gaussian Elimination and Pivoting

In this section we develop a scheme for solving a general system AX = B of N equations
and N unknowns. The goal is to construct an equivalent upper-triangular system
UX = Y that can be solved by the method of Section 2.3.

Two linear systems of dimension N × N are said to be equivalent provided that
their solution sets are the same. Theorems from linear algebra show that when certain
transformations are applied to a given system the solution sets do not change.

7

Theorem 2.7. (Elementary Transformations). The following operations applied
to a linear system yield an equivalent system:

Interchange: The order of two equations can be changed. (2.12)

Scaling: Multiplying an equation by a nonzero constant. (2.13)

Replacement: An equation can be replaced by the sum of itself and
a nonzero multiple of any other equation.

(2.14)

It is common to use (2.14) by replacing an equation with the difference of that
equation and a multiple of another equation. There concepts are illustrated in the
next example.

Example 2.15. Find the parabola y = A + Bx + Cx2 that passes through the three
points (1, 1), (2,−1), and (3, 1).

For each point we obtain an equation relating the value of x to the value of y. The
result is the linear system

A + B + C = 1 at (1, 1)
A + 2B + 4C = −1 at (2,−1)
A + 3B + 9C = 1 at (3, 1).

(2.15)

The variable A is eliminated from the second and third equations by subtracting
the first equation from them. This is an application of replacement transformation (3),
and the resulting equivalent linear system is

A + B + C = 1
B + 3C = 2

2B + 8C = 0.

The variable B is eliminated from the third equation in (5) by subtracting from it two
times the second equation. We arrive at the equivalent upper-triangular system:

A + B + C = 1
B + 3C = 2

2C = 4.

The back-substitution algorithm is now used to find the coefficients C = 4/2 = 1, B =
−2 − 3(2) = −8, and A = 1 − (−8) − 2 = 7, and equation of the parabola is y =
7− 8x + 2x2.

2.3 Triangular Factorization

In Section 3.3 we saw how easy it is to solve an upper-triangular system. Now we
introduce the concept of factorization of given matrix A into the product of a lower-
triangular matrix L that has 1’s along the main diagonal and an upper-triangular ma-
trix U with nonzero diagonal elements. For ease of notation we illustrate the concepts

8

with matrices of dimension 4× 4, but they apply to an arbitrary system of dimension
N ×N .

Definition 3.4. The nonsingular matrix A has a triangular factorization if it can be
expressed as the product of a low-triangular matrix L and an upper-triangular matrix
U :

A = LU.

In matrix form, this is written as




a11 a12 a13 a14

a21 a22 a23 a14

a31 a32 a33 a34

a41 a42 a43 a44


 =




1 0 0 0
m21 1 0 0
m31 m32 1 0
m41 m42 m43 1







u11 u12 u13 u14

0 u22 u23 u14

0 0 u33 u34

0 0 0 u44




The condition that A is nonsingular implies that ukk 6= 0 for all k. The notation
for the entries in L is mij, and the reason for the choice of mij instead of lij will be
pointed out soon.

2.3.1 Solution of a Linear System

Suppose that the coefficient matrix A for the linear system AX = B has a triangular
factorization (1), then the solution to

LUX = B

can be obtained by defining Y = UX and then solving two systems:

first solve LY = B for Y : then solve UX = Y for X.

In equation form, we must first solve the lower triangular system

2.3.2 Triangular Factorization

We now discuss how to obtain the triangular factorization. If row interchanges are not
necessary when using Gaussian elimination, the multipliers mij are the subdiagonal
entries in L.

Example 3.21 Use Gaussian elimination to constant the triangular factorization of
the matrix

A =




4 3 1
2 4 5
1 2 6


 .

Theorem 3.10 (Direct Factorization A=LU. No Row Interchanges). Suppose
that Gaussian elimination, without row interchanges, can be successfully performed to

9

solve the general linear system AX = B. Then the matrix A can be factored as the
product of a lower-triangular matrix L and an upper-triangular matrix U :

A = LU.

Furthermore L can be constructed to have 1’s on its diagonal and U will have nonzero
diagonal elements. After finding L and U the solution X is computed in two steps:

1. Solve LU = B for Y using forward substitution.
2. Solve UX = Y for X using back substitution.

2.3.3 Computational Complexity

2.3.4 Permutation matrices

2.3.5 Extending the Gaussian Elimination Process

10

2.4 Iterative Methods for Linear Systems

The goal of this chapter is extend some of the iterative methods introduced in Chapter
2 to higher dimensions. We consider an extension of fixed-point iteration that applies
to systems of linear equations.

2.4.1 Jacobi Iteration

Example 3.26. Consider the system of equations

4x− y + z = −7
4x− 8y + z = 21
−2x + y + 5z = 15

These equations can be written in the form

x =
7 + y − z

4

y =
21 + 4x + z

8

z =
15 + 2x− y

5
.

Table 3.2 Convergence Jacobi iteration for the Linear System (1)

k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
3 1.9625 3.925 2.9625
4 1.99062500 3.97656250 3.00000000
5 1.99414063 3.99531250 3.00093750
...

...
...

...
15 1.99999993 3.99999985 2.99999993
...

...
...

...
19 2.00000000 4.00000000 3.00000000

This suggests the following Jacobi iterative process:

11

xk+1 =
7 + yk − zk

4

yk+1 =
21 + 4xk + zk

8

zk+1 =
15 + 2xk − yk

5
.

Let us show that if we start with P0 = (x0, y0, z0) = (1, 2, 3), then the iteration in (3)
appears to converge to the solution (2, 4, 3).

Substitute x0 = 1, y0 = 2, and z0 = 2 into the right-hand side of each equation in
(3) to obtain the new values

x1 =
7 + 2− 2

4
= 1.75

y1 =
21 + 4 + 2

8
= 3.375

z1 =
15 + 2− 2

5
= 3.00.

The new point P1 = (1.75, 3.375, 3.00) is closer to (2, 4, 3) then P0. iteration using
(3) generates a sequence of points {Pk} that converges to the solution (2, 4, 3) (see
Table 3.2).

This process is called Jacobi iteration and can be used to solve certain types of
linear systems. After 19 steps, the iteration has converged to the nine-digit machine
approximation (2.00000000, 4.00000000, 3.00000000).

Linear systems with as many as 100, 000 variables often arise in the solution of
partial differential equations. The coefficient matrices for these systems are sparse;
that is, a large percentage of the entries of the coefficient matrix are zero. If there is
a pattern to the nonzero entries (i.e., tridiagonal systems), then an iterative process
provides an efficient method for solving these large systems.

Sometimes the Jacobi method does not work. Let us experiment and see that a
rearrangement of the original linear system can result in a system of iteration equations
that will produce a divergent sequence of points.

Example 3.27. Let the linear system (1) be rearranged as follows:

−2x + y + 5z = −15
4x− 8y + z = −21
4x− y + z = 7.

12

These equations can be written in the form

x =
15 + y + 5z

2

y =
21 + 4x + z

8
z = 7− 4x + y.

This suggests the following Jacobi iterative process:

xk+1 =
15 + yk + 5zk

3

yk+1 =
21 + 4xk + zk

8
zk+1 = 7− 4xk + yk.

See that if we start with P0 = (x0, y0, z0) then the iteration using (6) will diverge away
from the solution (2, 4, 3).

Substitute x0 = 1, y0 = 2, and z0 = 2 into the right-hand side of each equation in
(6) to obtain the new values x1, y1, and z1:

x1 =
−15 + 2 + 10

2
= −1.5

y1 =
21 + 4 + 2

8
= 3.375

z1 = 7− 4 + 2 = 5.00

The new point P1 = (−1.5, 3.375, 5.00) is farther away from the solution (2, 4, 3) than
P0. Iteration using the equations in (6) produces a divergent sequence (see Table 2.3).

Table 3.3 Divergent Jacobi iteration for the Linear System (4)

k xk yk zk

0 1.0 2.0 2.0
1 1.5 3.375 5.0
2 6.6875 2.5 16.375
3 34.6875 8.015625 17.25
4 46.617188 17.8125 123.73438
5 307.929688 36.150391 211.28125
6 502.62793 124.929688 1202.56836
...

...
...

...

13

2.4.2 Gauss-Seidel Iteration

Sometimes the convergence can be speeded up. Observe that the Jacobi iterative
process (3) yields three sequences {xk}, {yk}, and {zk} that converge to 2, 4, and 3,
respectively (see Table 3.2). It seems reasonable that {xk+1} could be used in place
of {xk} in the computation of yk+1. Similarly, xk+1 and yk+1 might be used in the
computation of zk+1. The next example shows what happens when this applied to the
equations in Example 3.26.

Example 3.28. Consider the system of equations given in (1) and the Gauss-Seidel
iterative process suggested by (2):

xk+1 =
7− yk − zk

4

yk+1 =
21 + 4xk+1 + zk

8

zk+1 =
15 + 2xk+1 − yk+1

5
.

See that if we start with P0 = (x0, y0, z0) = (1, 2, 3), then iteration using (7) will
converge to the solution (2,4,3).

Substitute y0 = 2 and z0 = 2 into the first equation of (7) and obtain

x1 =
7 + 2− 2

4
= 1.75.

Then substitute x1 = 1.75 and z0 = 2 into the second equation and get

y1 =
21 + 4(1.75) + 2

8
= 3.75.

Finally, substitute x1 = 1.75 and y1 = 3.75 into the third equation to get

z1 =
15 + 2(1.75)− 3.75

5
= 2.95.

Table 3.2 Convergence Gauss-Seidel iteration for the Linear System (1)

k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.75 2.95
2 1.95 3.96875 2.98625
3 1.995625 3.99609375 2.99903125
...

...
...

...
8 1.99999983 1.99999988 2.99999996
9 1.99999998 3.99999999 3.00000000
10 2.00000000 4.00000000 3.00000000

14

The new point P1 = (1.75, 3.75, 2.95) is closer to (2, 4, 3).
In view of Example 3.26 and 3.27, it is necessary to have some criterion to determine

whether the Jacobi iteration will converge. Hence we make the following definition.

Definition 3.6. A matrix A of dimension N × N is said to be strictly diagonally
dominant provided that

|akk| >
N∑

j=1,j 6=k

|ak,j| for k = 1, 2, . . . , N.

This means that in each row of the matrix the magnitude of the element on the
main diagonal must exceed the sum of the magnitudes of all other elements in the row.
The coefficient matrix of the linear system (1) in Example 3.26 is strictly diagonally
dominant because

In row 1: |4| > | − 1|+ |1|
In row 2: | − 8| > |4|+ |1|
In row 3: |5| > | − 2|+ |1|.

All the rows satisfy relation (8) in Definition 3.6; therefore, the coefficient matrix A
for the linear system (1) strictly diagonally dominant.

The coefficient matrix A of the linear system (4) in Example 3.27 is not strictly
diagonally dominant because

In row 1: | − 2| > |1|+ |5|

In row 2: | − 8| > |4|+ |1|
In row 3: |1| > |4|+ | − 1|.

Rows 1 and 3 do not satisfy relation (8) in Definition 3.6; therefore, the coefficient
matrix A for the linear system (4) is not strictly diagonally dominant.

We now generalized the Jacobi and Gauss-Seidel iteration processes. Suppose that
the given linear system is

a11x1 + a12x2 + · · ·+ a1jxj + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2jxj + · · ·+ a2NxN = b2
...

...
...

aj1x1 + aj2x2 + · · ·+ ajjxj + · · ·+ ajNxN = bj
...

...
...

aN1x1 + aN2x2 + · · ·+ aNjxj + · · ·+ aNNxN = bN .

Let the kth point be Pk = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
j , . . . , x

(k)
N); then the next point is Pk+1 =

(x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
j , . . . , x

(k+1)
N). The superscript (k) on the coordinates of Pk

enable us to identify the coordinates that belong to this point. The iteration formulas

15

use row j of (9) to solve for x
(k+1)
j in terms of a linear combination of the previous

values x
(k)
1 , x

(k)
2 , . . . , x

(k)
j , . . . , x

(k)
N :

Jacobi iteration:

x
(k+1)
j =

bj − aj1x
(k)
1 − · · · − ajj−1x

(k)
j−1 − ajj+1x

(k)
j+1 − · · · − ajNx

(k)
N

ajj

for j = 1, 2, . . . , N .
Jacobi iteration uses all old coordinates to generate all new coordinates, whereas

Gauss-Seidel iteration uses the new coordinates as they become available:
Gauss-Seidel Iteration:

x
(k+1)
j =

bj − aj1x
(k+1)
1 − · · · − ajj−1x

(k+1)
j−1 − ajj+1x

(k)
j+1 − · · · − ajNx

(k)
N

ajj

for j = 1, 2, . . . , N .
The following theorem gives a sufficient condition for Jacobi iteration to converge

Theorem 3.15 (Jacobi Iteration). Suppose that A is a strictly diagonally dom-
inant matrix. Then AX = b has a unique solution X = P . Iteration using formula
(10) will produce a sequence of vectors {Pk} that will converge to P for any choice of
the starting vector P0.
Proof. the proof can be found in advanced texts on numerical analysis.

It can be proved that the Gauss-Seidel method will also converge when the matrix
A strictly diagonally dominant. In many cases the Gauss-Seidel method will converge
faster than the Jacobi method: hence it is usually preferred (compare Examples 3.26
and 3.28). It is important to understand the slight modification of formula (10) that
has been made to obtain formula (11). In some cases the Jacobi method will converge
even though the Gauss-Seidel method will not.

2.4.3 Convergence

A measure of the closeness between vectors is needed so that we can determine if {Pk} is
converging to P . The Euclidean distance (see Section 3.1) between P = (x1, x2, . . . , xn)
and Q = (y1, y2, . . . , yN) is

‖P −Q‖ =




N∑

j=1

(xj − yj)
2




1/2

.

Its disadvantage is that it requires considerable computing effort. Hence we introduce
a different norm, ‖X‖1:

‖X‖1 =
N∑

j=1

|xj|.

16

The following result ensures that ‖X‖1 has the mathematical structure of a metric
and hence is suitable to use as a generalized ”distance formula.” From the study of
linear algebra we know that on a finite-dimensional vector space all norms are equiva-
lent; that is, if two vectors are close in the ‖ ∗ ‖1 norm, then they are also close in the
Euclidean norm ‖ ∗ ‖.

Theorem 3.16. Let X and Y be N -dimensional vectors and c be a scalar. Then
the function ‖X‖1 has the following properties:

‖X‖1 ≥ 0.
‖X‖1 = 0 if and only if X = 0.
‖cX‖1 = |c|‖X‖1.
‖X + Y ‖1 ≤ ‖X‖+ ‖Y ‖1.

Proof. We prove (17) and leave the others as exercises. For each j, the triangle
inequality for real number states that |xj + yj| ≤ |xj| + |yj|. Summing these yields
inequality (17):

|X + Y |1 =
N∑

j=1

|xj + yj| ≤
N∑

j=1

|xj|+
N∑

j=1

|yj| = ‖X‖1 + ‖Y ‖1.

The norm given by (13) can be used to define the distance between points.

Definition 3.7. Suppose that X and Y are two points in N -dimensional space. We
define the distance X and Y in the ‖ ∗ ‖1 norm as

‖X − Y ‖1 =
N∑

j=1

|xj − yj|.

Example 3.29. Determine the Euclidean distance and ‖∗‖1 distance between the points
P = (2, 4, 3) and (Q = (1.75, 3.75, 2.95).

The Euclidean distance is

‖P −Q‖ =
(
(2− 1.75)2 + (4− 3.75)2 + (3− 2.95)2

)1/2
= 0.3570.

The ‖ ∗ ‖1 distance is

‖P −Q‖1 = |2− 1.75|+ |4− 3.75|+ |3− 2.95| = 0.55.

The ‖∗‖1 is easier to compute and use for determining convergence in N -dimensional
space.

The MATLAB command A(j,[1:j-1,j+1:N]) is used in Program 3.4. This efficiently
selects all elements in the j th row of A, except the element in the j th column (i.e,
A(j,j)). This notation is used to simplify the Jacobi iteration (100 step in Program 3.4.

In both Program 3.4 and 3.5 we have used the MATLAB command norm, which is
the Euclidean norm. The ‖ ∗ ‖1 can also be used and the reader is encouraged to check
the Help menu in MATLAB or one of the reference works for information on the norm
command.

17

