
Chapter 4

Numerical Integration

Numerical integration is a primary tool used by engineers and scientists to obtain
approximate answers for definite integrals that cannot be solved analytically. In the
area of statistical thermodynamics, the Debye model for calculating the heat capacity
of a solid involves the following function;

Φ(x) =
∫ x

0

t3

et − 1
dt.

Since there is no analytic expression for Φ(x), numerical integration must be used to
obtain approximate values. For example, the value Φ(5) is the area under the curve
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Figure 4.1 The area under the curve y = f(t) for 0 ≤ t ≤ 5.
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Figure 4.1 Values of Φ(x)

x Φ(x)
1.0 0.2248052
2.0 1.1763426
3.0 2.5522185
4.0 3.8770542
5.0 4.8998922
6.0 5.5858554
7.0 6.0031690
8.0 6.2396238
9.0 6.3665739
10.0 6.4319219

y = f(t) = t3/(et− 1) for 0 ≤ t ≤ 5 (see Figure 4.1). The numerical approximation for
Φ(5) is

Φ(5) =
∫ 5

0

t3

et − 1
dt ≈ 4.8998922.

Each additional value of Φ(x) must be determined by another numerical integration.
Table 4.1 lists several of these approximations over the interval [1, 10].

The purpose of this chapter is to develop the basic principles of numerical integra-
tion. In Chapter 9, numerical integration formulas are used to derive the predictor-
corrector methods for solving differential equations.

4.1 Introduction to Quadrature

We now approach the subject of numerical integration. The goal is to approximate the
definite integral of f(x) over the interval [a, b] by evaluating f(x) at a finite number of
sample points.

Definition 4.1 Suppose that a = x0 < x1 < · · · < xM = b. A formula of the
form

Q[f ] =
M∑

k=0

wkf(xk) = w0f(x0) + w1f(x1) + · · ·+ wMf(xM) (4.1)

with the property that ∫ b

a
f(x)dx = Q[f ] + E[f ] (4.2)
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is called a numerical integration or quadrature formula. The term E(f) is called
the truncation error for integration. The values {xk}M

k=0 are called the quadrature
nodes, and {wk}M

k=0 are called the weights .

Depending on the application, the nodes {xk} are chosen in various ways. For the
trapezoidal rule, Simpson’s rule, and Boole’s rule, the nodes are chosen to be equally
spaced. For Gauss-Legendre quadrature, the nodes are chosen to be zeros of certain
Legendre polynomials. When the integration formula is used to develop a predictor
formula for differential equations, all the nodes are chosen less than b. For all applica-
tion, it is necessary to know something about the accuracy of the numerical solution.

Definition 4.2. The degree of precision of a quadrature formula is the positive
integer n such that E[Pi] = 0 for all polynomials Pi(x) of degree i ≤ n, but for which
E[Pn+1] 6= 0 for some polynomial Pn+1(x) of degree n + 1.

The form of E[Pi] can be anticipated by studying what happens when f(x) is a
polynomial. Consider the arbitrary polynomial

Pi(x) = aix
i + xi−1x

i−1 + · · ·+ a1x + a0

of degree i. If i ≤ n, then P
(n+1)
i (x) ≡ 0 for all x, and P

(n+1)
n+1 (x) = (n + 1)!an−1 for all

x. Thus it is not surprising that the general form for the truncation error term is

E[f ] = Kf (n+1)(c), (4.3)

where K is a suitably chosen constant and n is the degree of precision. The proof of
this general result can be found in advanced books on numerical integration.

The derivation of quadrature formulas is sometimes based on polynomial interpo-
lation. Recall that there exists a unique polynomial PM(x) of degree ≤ M passing
through the M + 1 equally spaced points {(xk, yk)}M

k=0. When this polynomial is used
to approximate f(x), over [a, b], and then the integral of f(x) is approximated by
the integral of PM(x), the resulting formula is called a Newton-Cotes quadrature
formula (see Figure 2.2). When the sample points x0 = a and xM = b are used,it
is called a closed Newton-Cotes formula. The next result gives the formulas when
approximating polynomials of degree M = 1, 2, 3, and 4 are used.

Theorem 4.1 (Closed Newton-Cotes Quadrature Formula). Assume that xk =
x0 + kh are equally spaced nodes and fk = f(xk). The first four closed Newton-Cotes
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quadrature formulas are

∫ x1

x0

f(x)dx ≈ h

2
(f0 + f1) (the traezoidal rule), (4.4)

∫ x2

x0

f(x)dx ≈ h

3
(f0 + 4f1 + f2) (Simpson’s rule), (4.5)

∫ x3

x0

f(x)dx ≈ 3h

8
(f0 + 3f1 + 3f2 + f3) (Simpson’s 3

8
rule), (4.6)

∫ x4

x0

f(x)dx ≈ 2h

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4) (Boole’s rule). (4.7)

Figure 2.2 (a) The trapezoidal rule integrates (b) Simpson’s rule integrates (c) Simp-
son’s rule integrates (d) Boole’s rule integrates

Corollary 4.1 (Newton-Cotes Precision). Assume that f(x) is sufficiently dif-
ferentiable; then E[f ] for Newton-Cotes quadrature involves an appropriate higher
derivative. The trapezoidal rule has degree of precision n = 1. If f ∈ C2[a, b], then

∫ x1

x0

f(x)dx =
h

2
(f0 + f1)− h3

12
f (2)(c). (4.8)
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Simpson’s rule has degree of precision n = 3. If f ∈ C4[a, b], then

∫ x2

x0

f(x) =
h

3
(f0 + 4f1 + f2)− h5

90
f (4)(c). (4.9)

Simpson’s 3
8

rule has degree of precisionn = 3. If f ∈ C4[a, b], then

∫ x3

x0

f(x)dx =
3h

8
(f0 + 3f1 + 3f2 + f3)− 3h5

80
f (4)(c). (4.10)

Boole’s rule has degree of precision n = 5, If f ∈ C6[a, b], then

∫ x4

x0

f(x)dx =
2h

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4)− 8h7

945
f (6)(c). (4.11)

Proof of Theorem 4.1. Start with the Lagrange polynomial PM(x) based on x0, x1, . . . , xM

that can be used to approximate f(x):

f(x) ≈ PM(x) =
M∑

k=0

fkLM,k(x), (4.12)

where fk = f(xk) for k = 0, 1, . . . , M. An approximation for the integral is obtained by
replacing the integrand f(x) with the polynomial PM(x). This is the general method
for obtaining a Newton-Cotes integration formula:

∫ xM

x0

f(x) ≈
∫ xM

x0

PM(x)dx

=
∫ xM

x0

(
M∑

k=0

fkLM,k(x)

)
dx =

M∑

k=0

(∫ xM

x0

fkLM,k(x)dx
)

(4.13)

=
M∑

k=0

(∫ xM

x0

LM,k(x)dx
)

fk =
M∑

k=0

wkfk.

The details for the general computations of coefficients of wk in (4.13) are tedious. We
shall give a sample proof of Simpson’s rule, which is the case M = 2. This case involves
the approximating polynomial

P2(x) = f0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f1

(x− x0)(x− x2)

(x− x0)(x− x2)
+ f2

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
. (4.14)
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Since f0, f1, and f2 are constants with respect to integration, the relations in (4.13)
lead to

∫ x2

x0

f(x)dx ≈ f0

∫ x2

x0

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
dx (4.15)

+f1

∫ x2

x0

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
dx + f2

∫ x2

x0

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
dx

We introduce the change of variable x = x0 + ht with dx = hdt to assist with the
evaluation of the integrals in (4.15). The new limits of integration are from t = 0 to
t = 2. The equal spacing of the nodes xk = x0 + kh leads to xk − xj = (k − j)h and
x− xk = h(t− k), which are used to simplify (4.15) and get

∫ x2

x0

f(x)dx ≈ f0

∫ 2

0

h(t− 1)h(t− 2)

(−h)(−2h)
hdt + f1

∫ 2

0

h(t− 0)h(t− 2)

(h)(−h)
hdt (4.16)

+f2

∫ 2

0

h(t− 0)h(t− 1)

(2h)(h)
hdt

= f0
h

2

∫ 2

0
(t2 − 3t + 2)dt− f1h

∫ 2

0
(t2 − 2t)dt + f2

h

2

∫ 2

0
(t2 − t)dt

= f0
h

2

(
t3

3
− 3t2

2
+ 2t

) ∣∣∣
t=2

t=0
− f1h

(
t3

3
− t2

) ∣∣∣
t=2

t=0

+f2
h

2

(
t3

3
− t2

2

) ∣∣∣
t=2

t=0

= f0
h

2

(
2

3

)
− f1h

(−4

3

)
+ f2

h

2

(
2

3

)

=
h

3
(f0 + 4f1 + f2).

and the proof is complete. We postpone a sample proof of Corollary 4.1 until Section
4.2.

Example 2.1. Consider the function f(x) = 1+e−x sin(4x), the equally spaced spaced
quadrature nodes x0 = 0.0, x1 = 0.5, x2 = 1.0, x3 = 1.5, and x4 = 2.0, and the corre-
sponding function values f0 = 1.00000, f2 = 0.72159, f3 = 0.93765, and f4 = 1.13390.
Apply the various quadrature formulas (2.4) through (2.7).
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The step size is h = 0.5, and the computations are
∫ 0.5

0
f(x)dx ≈ 0.5

2
(1.00000 + 1.55152) = 0.63788

∫ 1.0

0
f(x)dx ≈ 0.5

3
(1.00000 + 4(1.55152) + 0.72159) = 1.32128

∫ 1.5

0
f(x)dx ≈ 3(0.5)

8
(1.00000 + 3(1.55152) + 3(0.72159) + 0.93765)

= 1.64193
∫ 2.0

0
f(x)dx ≈ 2(0.5)

45
(7(1.00000) + 32(1.55152) + 12(0.72159)

+32(0.93765) + 7(1.13390)) = 1.29444.

It is important to realize that the quadrature formulas (4.4) through (4.7) applied in
the above illustration give approximations for definite integrals over different intervals.
The graph of the curve y = f(x) and the areas under the Lagrange polynomials y =
P1(x), y = P2(x), y = P3(x), and P4(x) are shown in Figure 4.2 (a) through (d),
respectively.

In Example 4.1 we applied the quadrature rules with h = 0.5. If the endpoints
of the interval [a, b] are held fixed, the step size must be adjusted for each rule. The
step sizes are h = b − a, h = (b − a)/2, h = (b − a)/3, and h = (b − a)/4 for the
trapezoidal rule, Simpson’s rule, Simpson’s 3

8
rule, and Boole’s rule, respectively. The

next example illustrates this point.

Example 2.2 Consider the integration of the function f(x) = 1 + e−x sin(4x) over
the fixed interval [a, b] = [0, 1]. Apply the various formulas (4.4) through (4.7).

For the trapezoidal rule, h = 1 and
∫ 1

0
f(x)dx ≈ 1

2
(f(0) + f(1))

=
1

2
(1.00000 + 0.72159) = 0.86079.

For Simpson’s rule, h = 1/2, we get

∫ 1

0
f(x)dx ≈ 1/2

3
(f(0) + 4f(1/2) + f(1))

=
1

6
(1.00000 + 4(1.55152) + 0.72159) = 1.32128.

For Simpson’s 3
8

rule, h = 1/3, and we obtain

∫ 1

0
f(x)dx ≈ 3(1/3)

8
(f(0) + 3f(

1

3
) + 3f(

2

3
) + f(1))
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=
1

8
(1.00000 + 3(1.69642) + 3(1.23447) + 0.72159) = 1.31440.

For Boole’s rule, h = 1/4, and the result is

∫ 1

0
f(x)dx ≈ 2(1/4)

45
(7f(0) + 32f(

1

4
) + 12f(

1

2
) + 32f(

3

4
) + 7f(1))

=
1

90

(
7(1.00000) + 32(1.65534) + 12(1.55152)

+32(1.06666) + 7(0.72159)
)

= 1.30859.

The true value of the definite integral is

∫ 1

0
f(x)dx =

21e− 4 cos(4)− sin(4)

17e
= 1.3082506046426 . . . ,

and the approximation 1.30859 from Boole’s rule is best, the area under each of the
Lagrange polynomials P1(x), P2(x), P3(x), and P4(x) is shown in Figure 2.3(a) through
(d), respectively.

Figure 2.3 (a) the trapezoidal rule used over [0,1] yields the approximation 0.86079
(b) simpson’s rule used over [0,1] yields the approximation 1.32128. (c) simpson’s rule
used over [0,1] yields the approximation 1.31440. [d] boole’s rule used over [0,1] yields
the approximation 1.30859.

To make a fair comparison of quadrature methods, we must use the same number of
function evaluations in each method. Our final example is concerned with comparing
integration over a fixed interval [a, b] using exactly five function evaluations fk = f(xk),
for k = 0, 1, . . . , 4 for each method. When the trapezoidal rule is applied on the four
subintervals [x0, x1], [x1, x2], x2, x3], and [x3, x4], it is called a composite trapezoidal
rule :

∫ x4

x0

f(x)dx =
∫ x1

x0

f(x)dx +
∫ x2

x1

f(x)dx +
∫ x3

x2

f(x)dx +
∫ x4

x3

f(x)dx

≈ h

2
(f0 + f1) +

h

2
(f1 + f2) +

h

2
(f2 + f3) +

h

2
(f3 + f4) (4.17)

=
h

2
(f0 + 2f1 + 2f2 + 2f3 + f4).

Simpson’s rule can also be used in this manner. When Simpson’s rule is applied on the
two subintervals [x0, x2] and [x2, x4], it is called a composite Simpson’s rule :

∫ x4

x0

f(x)dx =
∫ x2

x0

f(x)dx +
∫ x4

x2

f(x)dx

≈ h

3
(f0 + 4f1 + f2) +

h

3
(f2 + 4f3 + f4) (4.18)
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=
h

3
(f0 + 4f1 + 2f2 + 4f3 + f4)

The next example compares the values obtained with (2.17), (2.18), and(2.7).

Example 2.3. Consider the integration of the function f(x) = 1 + e−x sin(4x) over
[a, b] = [0, 1]. Use exactly five function evaluations and compare the results from the
composite trapezoidal rule, composite Simpson rule, and Boole’s rule.

The uniform step size is h = 1/4. The composite trapezoidal rule (2.17) produces

∫ 1

0
f(x)dx ≈ 1/4

2
(f(0) + 2f(

1

4
) + 2f(

1

2
) + 2f(

3

4
) + f(1))

=
1

8
(1.00000 + 2(1.65534) + 2(1.55152) + 2(1.06666) + 0.72159)

= 1.28358

Using the composite Simpson’s rule (2.18), we get

∫ 1

0
f(x)dx ≈ 1/4

3
(f(0) + 4f(

1

4
) + 2f(

1

2
) + 4f(

3

4
) + f(1))

=
1

12
(1.00000 + 4(1.65534) + 2(1.55152) + 4(1.06666) + 0.72159)

= 1.30938

We have already seen the result of Boole’s rule in Example 7.2:

∫ 1

0
f(x)dx ≈ 2(1/4)

45
(7f(0) + 32f(

1

4
) + 12f(

1

2
) + 32f(

3

4
) + 7f(1))

= 1.30859.

Figure 2.4 (a) the composite trapezoidal rule yields the approximation 1.28358. (b)
the composite simpson rule yields the approximation 1.30938.

The true value of the integral is

∫ 1

0
f(x)dx =

21e− 4 cos(4)− sin(4)

17e
= 1.30825046426 . . . ,

and the approximation 1.30938 from Simpson’s rule is much better than the value
1.28358 obtained from the trapezoidal rule. Again, the approximation 1.30859 from
Boole’s rule is closest. Graphs for the areas under the trapezoids and parabolas are
shown in Figure 2.4(a) and (b), respectively.

Example 2.4 determine the degree of precision of Simpson’s 3
8

rule.
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It will suffice to apply Simpson’s 3
8

rule over the interval [0, 3] with the five test
functions f(x) = 1, x, x2, x3 and x4. For the first four functions, Simpson’s 3

8
rule is

exact. ∫ 3

0
1dx = 3 =

3

8
(1 + 3(1) + 3(1) + 1)

∫ 3

0
xdx =

9

2
=

3

8
(0 + 3(1) + 3(2) + 3)

∫ 3

0
x2dx = 9 =

3

8
(0 + 3(1) + 3(4) + 9)

∫ 3

0
x3dx =

81

4
=

3

8
(0 + 3(1) + 3(8) + 27).

The function f(x) = x4 is the lowest power of x for which the rule is not exact.

∫ 3

0
x4dx =

243

5
≈ 99

2
=

3

8
(0 + 3(1) + 3(16) + 81).

Therefore, the degree of precision of Simpson’s 3
8

rule is n = 3.

4.1.1 Exercises for introduction to quadrature

1. Consider integration of f(x) over the fixed interval [a, b] = [0, 1]. Apply the various
quadrature formulas (4) through (7). The step sizes are h = 1, h = 1

2
, h = 1

3
, and

h = 1
4

for the trapezoidal rule, Simpson’s rule, Simpson’s 3
8

rule, and Boole’s rule,
respectively.

(a) f(x) = sin(πx)
(b) f(x) = 1 + e−x cos(4x)
(c) f(x) = sin(

√
x)

Remark. The true values of the definite integrals are (a)2/π = 0.636619772367 . . .,
(b) 18e− cos(4) + 4 sin(4))/(17e) = −1.007459631397 . . ., and (c) 2(sin(1)− cos(1)) =
0.602337357879 . . .. Graphs of the functions are shown in Figures 2.5(a) through (c),
respectively.
2. Consider integration of over the fixed interval [a, b]=[0, 1]. Apply the various quadra-
ture formulas; the composite trapezoidal rule (2.17), the composite Simpson rule (2.18),
and Boole’s rule (2.7). Use five function evaluations at equally spaced nodes. The uni-
form step size is h = 1

4
.

(a) f(x) = sin(πx)
(b) f(x) = 1 + e−x cos(4x)
(c) f(x) = sin(

√
x)

3. Consider a general interval [a, b]. Show that Simpson’s rule produces exact results
for the functions f(x) = x2 and f(x) = x3; that is,
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(a)
∫ b
a x2dx = b3

3
− a3

3
(b)

∫ b
a x3dx = b4

4
− a4

4

4. Integrate the Lagrange interpolation polynomial

P1(x) = f0
x− x1

x0 − x1

+ f1
x− x0

x1 − x0

over the interval [x0, x1] and establish the trapezoidal rule.
Figure 7.5
5. Determine the degree of precision of the trapezoidal rule. It will suffice to apply

the trapezoidal rule over [0, 1] with the three test functions f(x) = 1, x, and x2.
6. Determine the degree of precision of Simpson’s rule. It will suffice to apply Simpson’s
rule over [0, 2] with the five test functions f(x) = 1, x, x2, x3, and x4. Contrast your
result with the degree of precision of Simpson’s 3

8
rule.

7. Determine the degree of precision of Boole’s rule. It will suffice to apply Boole’s
rule over [0, 4] with the seven test functions f(x) = 1, x, x2, x3, x4, x5, and x6.
8. The intervals in exercises 5, 6, and 7 and Example 2.4 were selected to simplify the
calculation of the quadrature nodes. But, on any closed interval [a, b] over which the
function f is integrable, each of the four quadrature rules (2.4) through (2.7) has the
degree of precision determined in Exercises 5, 6, and 7 and Example 2.4, respectively.
A quadrature formula on the interval [a, b] can be obtained from a quadrature formula
on the interval [c, d] by making a change of variables with the linear function

x = g(t) =
b− a

d− c
t +

ad− bc

d− c
.

where dx = b−a
d−c

dt.
(a) Verify that x = g(t) is the line passing through the points (c, a) and (d, b).
(b) Verify that the trapezoidal rule has the same degree of precision on the interval

[a, b] as on the interval [0, 1].
(c) Verify that Simpson’s rule has the same degree of precision on the interval [a, b]

as on the interval [0, 2].
(d) Verify that Simpson’s rule has the same degree of precision on the interval [a, b]

as on the interval [0, 4].
9. Derive Simpson’s rule using Lagrange polynomial interpolation. Hint. After chang-
ing the variable, integrals similar to those in (2.16) are obtained:

∫ x3

x0

f(x)dx ≈ −f0
h

6

∫ 3

0
(t− 1)(t− 2)(t− 3)dt + f1

h

2

∫ 3

0
(t− 0)(t− 2)(t− 3)dt

−f2
h

2

∫ 3

0
(t− 0)(t− 1)(t− 3)dt + f3

h

6

∫ 3

0
(t− 0)(t− 1)(t− 2)dt

= f0
h

2

(
t4

4
+ 2t3 − 11t2

2
+ 6t

) ∣∣∣
t=3

t=0
+ f1

h

2

(
t4

4
− 5t3

3
+ 3t2

) ∣∣∣
t=3

t=0
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+f2
h

2

(−t4

4
+

4t3

3
− 3t2

2

) ∣∣∣
t=3

t=0
+ f3

h

6

(
t4

4
− t3 + t2

) ∣∣∣
t=3

t=0

10. Derive the closed Newton-Cotes quadrature formula, based on a Lagrange approx-
imating polynomial of degree 5, using the 6 equally spaced nodes xk = x0 + kh, where
k = 0, 1, . . . , 5.
11. In the proof of Theorem 2.1. Simpson’s rule was derived by integrating the second-
degree Lagrange polynomial based on the three equally spaced nodes x0, x1, and x2.
Derive Simpson’s rule by integrating the second-degree Newton polynomial based on
the three equally spaced nodes x0, x1, and x2.

4.2 Composite Trapezoidal and Sinpson’s Rule

An intuitive method of finding the area under the curve y = f(x) over [a, b] is by approx-
imating that area with a series of trapezoids that lie above the intervals {[xk, xk+1]}.

Theorem 2.2 (Composite Trapezoidal Rule). Suppose that the interval [a, b]
is subdivided into M subintervals [xk, xk+1] of width h = (b − a)/M by using the
equally spaced nodes xk = a + kh, for k = 0, 1, . . . , M . The composite trapezoidal
rule for M subintervals can be expressed in any of three equivalent ways:

T (f, h) =
h

2

M∑

k=1

(f(xk−1) + f(xk)) (4.19)

or

T (f, h) =
h

2
(f0 + 2f1 + 2f2 + 2f3 + · · ·+ 2fM−2 + 2fM−1 + fM) (4.20)

or

T (f, h) =
h

2
(f(a) + f(b)) + h

M−1∑

k=1

f(xk). (4.21)

This is an approximation to the integral of f(x) over [a, b], and we write

∫ b

a
f(x)dx ≈ T (f, h). (4.22)

Proof. Apply the trapezoidal rule over each subinterval [xk−1, xk] (see Figure 2.6). Use
the additive property of the integral for subintervals:

∫ b

a
f(x)dx =

M∑

k=1

∫ xk

xk−1

f(x)dx ≈
M∑

k=1

h

2
(f(xk−1) + f(xk)). (4.23)

Since h/2 is a constant, the distributive law of addition can be applied to obtain (2.19).
Formula (2.20) is the expanded version of (2.19). Formula (2.21) shows how to group
all the intermediate terms in (2.20) that are multiplied by 2.
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Approximating f(x) = 2 + sin(2
√

x) with piecewise linear polynomials results in
places where the approximating is close and places where it is not. To achieve accuracy
the composite trapezoidal rule must be applied with many subintervals. In the next
example we have chosen to numerically integrate this function over the interval [1, 6].
Investigation of the integral over [0, 1] is left as an exercise.

Example2.5. Consider f(x) = 2 + sin(2
√

x). Use the composite trapezoidal rule
with 11 sample points to compute an approximation to the integral of f(x) taken over
[1, 6].

To generate 11 sample points, we use M = 10 and h = (6 − 1)/10 = 1/2. Using
formula (2.21), the computation is

T (f,
1

2
) =

1/2

2
(f(1) + f(6))

+
1

2

(
f(

3

2
) + f(2) + f(

5

2
) + f(3) + f(

7

2
) + f(4) + f(

9

2
) + f(5) + f(

11

2
)
)

=
1

4
(2.90929743 + 1.01735756)

+
1

2
(2.63815764 + 2.30807174 + 1.97931647 + 1.68305284 + 1.43530410

+1.24319750 + 1.10831775 + 1.02872220 + 1.00024140)

=
1

4
(3.92665499) +

1

2
(14.42438165)

= 0.98166375 + 7.21219083 = 8.19385457.

Theorem 2.3 (Composite Simpson Rule). Suppose that [a, b] is subdivided into
2M subintervals [xk, xk+1] of equal width h = (b − a)/(2M) by using xk = a + kh for
k = 0, 1, . . . , 2M . The composite Simpson rule for 2M subintervals can be
expressed in any of three equivalent ways:

S(f, h) =
h

3

M∑

k=1

(f(x2k−2) + 4f(x2k−1) + f(x2k)) (4.24)

or

S(f, h) =
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·+ 2f2M−2 + 4f2M−1 + f2M) (4.25)

or

S(f, h) =
h

3
(f(a) + f(b)) +

2h

3

M−1∑

k=1

f(x2k) +
4h

3

M∑

k=1

f(x2k−1). (4.26)

This is an approximation to the integral of f(x) over [a, b], and we write

∫ b

a
f(x)dx ≈ S(f, h). (4.27)

16



Proof. Apply Simpson’s rule over each subinterval [x2k−2, x2k] (see Figure 2.7). Use
the additive property of the integral for subintervals:

∫ b

a
f(x)dx =

M∑

k=1

∫ x2k

x2k−2

f(x)dx (4.28)

≈
M∑

k=1

h

3
(f(x2k−2) + 4f(x2k−1) + f(x2k)).

Since h/3 is a constant, the distributive law of addition can be applied to obtain
(2.24). Formula (2.25) is the expanded version of (2.24). Formula (2.26) groups all the
intermediate terms in (2.25) that are multiplied by 2 and those that are multiplied by
4.

Approximating f(x) = 2+sin(2
√

x) with piecewise quadratic polynomials produces
places where the approximation is close and places where it is not. To achieve accu-
racy the composite Simpson rule must be applied with several subintervals .In the next
example we have chosen to numerically integrate this function over [1, 6] and leave
investigation of the integral over [0, 1] as an exercise.

Example 2.6. Consider f(x) = 2 + sin(2
√

x). Use the composite Simpson rule
with 11 sample points to compute an approximation to the integral of f(x) taken over
[1, 6].

To generate 11 sample points, we must use M = 5 and h = (6−1)/10 = 1/2. Using
formula (2.26), the computation is

S(f,
1

2
) =

1

6
(f(1) + f(6)) +

1

3
(f(2) + f(3) + f(4) + f(5))

+
2

3

(
f(

3

2
) + f(

5

2
) + f(

7

2
) + f(

9

2
) + f(

11

2
)
)

=
1

6
(2.90929743 + 1.01735756)

+
1

3
(2.30807174 + 1.68305284 + 1.24319750 + 1.02872220)

+
2

3
(2.63815764 + 1.97931647 + 1.43530410 + 1.10831775 + 1.00024140)

=
1

6
(3.92665499) +

1

3
(6.26304429) +

2

3
(8.16133735)

= 0.65444250 + 2.08768143 + 5.44089157 = 8.18301550.
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4.2.1 Error Analysis

The significance of the next two results is to understand that the error terms ET (f, h)
and ES(f, h) for the composite trapezoidal rule and composite Simpson rule are of
the order O(h2) and O(h4), respectively. This shows that the error for Simpson’s
rule converges to zero faster than the error for the trapezoidal rule as the step size h
decreases to zero. In cases where the derivatives of f(x) are know, the formulas

ET (f, h) =
(b− a)f (2)(c)h2

12
and ES(f, h) =

(b− a)f (4)(c)h4

180

can be used to estimate the number of subintervals required to achieve a specified ac-
curacy.
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98
Corollary 2.2 (Trapezoidal Rule: Error Analysis). Suppose that [a, b] is subdi-
vided into M subintervals [xk, xk+1] of width h = (b−a)/M . The composite trapezoidal
rule

T (f, h) =
h

2
(f(a) + f(b)) + h

M−1∑

k=1

f(xk) (4.29)

is an approximation to the integral

∫ b

a
f(x)dx = T (f, h) + ET (f, h). (4.30)

Furthermore, if f ∈ C2[a, b], there exists a value c with a < c < b so that the error
term ET (f, h) has the form

ET (f, h) =
(b− a)f (2)(c)h2

12
= O(h2). (4.31)

Proof. We first determine the error term when the rule is applied over [x0, x1]. Inte-
grating the Lagrange polynomial P1(x) and its remainder yields

∫ x1

x0

f(x)dx =
∫ x1

x0

P1(x)dx +
∫ x1

x0

(x− x0)(x− x1)f
(2)(c(x))

2!
dx. (4.32)

The term (x−x0)(x−x1) does not change sign on [x0, x1], and f (2)(c(x)) is continuous.
Hence the second Mean Value Theorem for integrals implies that there exists a value
c1 so that

∫ x1

x0

f(x)dx =
h

2
(f0 + f1) + f (2)(c1)

∫ x1

x0

(x− x0)(x− x1)

2!
dx. (4.33)

Use the change of variable x = x0 + ht in the integral on the right side of (2.33):

∫ x1

x0

f(x)dx =
h

2
(f0 + f1) +

f (2)(c1)

2

∫ 1

0
h(t− 0)h(t− 1)hdt

=
h

2
(f0 + f1) +

f (2)(c1)h
3

2

∫ 1

0
(t2 − t)dt (4.34)

=
h

2
(f0 + f1)− f (2)(c1)h

3

12
.

Now we are ready to add up the error terms for all of the intervals [xk, xk+1]:

∫ b

a
f(x) =

M∑

k=1

∫ xk

xk−1

f(x)dx

19



=
M∑

k=1

h

2
(f(xk−1) + f(xk))− h3

12

M∑

k=1

f (2)(ck). (4.35)

The first sum is the composite trapezoidal rule T (f, h). In the second term, one factor
of h is replaced with its equivalent h = (b− a)/M , and the result is

∫ b

a
f(x)dx = T (f, h)− (b− a)h2

12

(
1

M

M∑

k=1

f (2)(ck)

)
.

The term in parentheses can be recognized as an average of values for the second
derivative and hence is replaced by f (2)(c). Therefore, we have established that

∫ b

a
f(x)dx = T (f, h)− (b− a)f (2)(c)h2

12
,

and the proof of Corollary 2.2 is complete.

Corollary 2.3 (Simpson’s Rule: Error Analysis). Suppose that [a, b] is subdi-
vided into 2M subintervals [xk, xk+1] of equal width h = (b− a)/(2M). The composite
Simpson rule

S(f, h) =
h

3
(f(a) + f(b)) +

2h

3

M−1∑

k=1

f(x2k) +
4h

3

M∑

k=1

f(x2k−1) (4.36)

is an approximation to the integral
∫ b

a
f(x)dx = S(f, h) + ES(f, h). (4.37)

Furthermore, if f ∈ C4[a, b], there exists a value c with a < c < b so that the error
term ES(f, h) has the form

ES(f, h) =
(b− a)f (4)(c)h4

180
= O(h4) (4.38)

Example 2.7. Consider f(x) = 2+sin(2
√

x). Investigate the error then the composite
trapezoidal rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80, and
160.

Table 2.2. The Composite Trapezoidal Rule for
f(x) = 2 + sin(2

√
x) over [1, 6]

M h T (f, h) ET (f, h) = O(h2)
10 0.5 8.19385457 0.01037540
20 0.25 8.18604926 0.00257006
40 0.125 8.18412019 0.00064098
80 0.0625 8.18363936 0.00016015
160 0.03125 8.18351924 0.00004003
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Table 2.2 shows the approximations T (f, h). The antiderivative of f(x) is

F (x) = 2x−√x cos(2
√

x) +
sin(2

√
x)

2
,

and the true value of the definite integral is
∫ 6

0
f(x)dx = F (x)

∣∣∣
x=6

x=1
= 8.1834792077.

This value was used to compute the values ET (f, h) = 8.1834792077−T (f, h) in Table
2.2. It is important to observe that when h is reduced by a factor of 1

2
the successive er-

rors ET (f, h) are diminished by approximately 1
4
. This confirms that the order is O(h2).

Example 2.8. Consider f(x) = 2+sin(2
√

x). Investigate the error when the compos-
ite Simpson rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80,and
160.

Table 2.3 shows the approximations S(f, h). The true value of the integral is
8.1834792077, which was used to compute the values ES(f, h) = 8.1834792077−S(f, h)
in Table 2.3. It is important to observe that when h is reduced by a factor of 1

2
the

successive errors ES(f, h) are diminished by approximately 1
16

. This confirms that the
order is O(h4).

Table 2.3 The Composite Simpson Rule for
f(x) = 2 + sin(2

√
x) over [1, 6]

M h S(f, h) ES(f, h) = O(h4)
5 0.5 8.18301549 0.00046371
10 0.25 8.18344750 0.00003171
20 0.125 8.18347717 0.00000204
40 0.0625 8.18347908 0.00000013
80 0.03125 8.18347920 0.00000001

Example 2.9. Find the number M and the step size h so that the error ET (f, h) for the
composite trapezoidal rule is less than 5×10−9 for the approximation

∫ 7
2 dx/x ≈ T (f, h).

The integrand is f(x) = 1/x and its first two derivatives are f ′(x) = −1/x2 and
f ′′(x) = 2/x3. The maximum value of |f ′′(x)| taken over [2, 7] occurs at the end point,
x = 2 and thus we have the bound |f ′′(c)| ≤ |f ′′(2)| = 1

4
, for 2 ≤ c ≤ 7. This is used

with formula (2.31) to obtain

|ET (f, h)| = | − (b− a)f ′′(c)h2|
12

≤ (7− 2)1
4
h2

12
=

5h2

48
. (4.39)

The step size h and number M satisfy the relation h = 5/M , and this is used in (2.39)
to get the relation

|ET (f, h)| ≤ 125

48M2
≤ 5× 10−9. (4.40)
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Now rewrite (2.40) so that it is easier to solve for M:

25

48
× 109 ≤ M2 (4.41)

Solving (2.41), we find that 22821.77 ≤ M . Since M must be an integer, we choose
M = 22, 822 and the corresponding step size is h = 5/22, 822 = 0.000219086846. When
the composite trapezoidal rule is implemented with this many function evaluations,
there is a possibility that the rounded-off function evaluations will produce a significant
amount of error. When the computation was performed, the result was

T (f,
5

22, 822
) = 1.252762969,

which compares favorably with the true value
∫ 7
2 dx/x = ln(x)|x=7

x=2 = 1.252762968. The
error is smaller than predicted because the bound 1

4
for |f ′′(c)| was used. Experimen-

tation shows that it takes about 10,001 function evaluations to achieve the desired
accuracy of 5 × 10−9, and when the calculation is performed with M = 10, 000, the
result is

T (f,
5

10, 000
) = 1.252762973.

The composite trapezoidal rule usually requires a large number of function eval-
uations to achieve an accurate answer. This is contrasted in the next example with
Simpson’s rule, which will require significantly fewer evaluations.

Example 2.10. Find the number M and the step size h so that the error ES(f, h)
for the composite Simpson rule is less than 5× 10−9 for the approximation

∫ 7
2 dx/x ≈

S(f, h).
The integrand is f(x) = 1/x, and f (4)(x) = 24/x5. The maximum value of |f (4)(c)|

taken over [2, 7] occurs at the end point x = 2, and thus we have the bound |f (4)(c)| ≤
|f (4)(2)| = 3

4
for 2 ≤ c ≤ 7. This is used with formula (2.38) to obtain

|ES(f, h) =
| − (b− a)f (4)(c)h4|

180
≤ (7− 2)3

4
h4

180
=

h4

48
. (4.42)

The step size h and number M satisfy the relation h = 5/(2M), and this is used in
(2.42) to get the relation

|ES(f, h)| ≤ 625

768M4
≤ 5× 10−9. (4.43)

Now rewrite (2.43) so that it is easier to solve for M :

125

768
× 10−9 ≤ M4. (4.44)
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Solving (2.44), we find that 112.95 ≤ M , Since M must be an integer, we chose
M = 113, and the corresponding step size is h = 5/226 = 0.02212389381. When the
composite Simpson rule was performed, the result was

S(f,
5

226
) = 1.252762969,

which agrees with
∫ 7
2 dx/x = ln(x)|x=7

x=2 = 1.252762968. Experimentation shows that it
takes about 129 function evaluations to achieve the desired accuracy of 5 × 10−9, and
when the calculation is performed with M = 64, the result is

S(f,
5

128
) = 1.252762973.

So we see that the composite Simpson rule using 229 evaluations of and the com-
posite trapezoidal rule using 22,823 evaluations of f(x) achieve the same accuracy. In
Example 2,10, Simpson’s rule required about 1/100 the number of function evaluations.

Program 2.1 (Composite Trapezoidal Rule). To approximate the integral
∫ b
a f(x)dx = h

2
(f(a) + f(b)) + h

M−1∑
k=1

f(xk)

by sample f(x) at the M + 1 equally spaced points xk = a + kh, for k = 0, 1, 2,
. . . , M . Notice that x0 = a and xM = b.

Function s=traprl(f,a,b,M)
%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - M is the number of subintervals
%Output - s is the trapezoidal rule sum
h=(b-a)/M;
s=0;
for k=1:(M-1)

x=a+h*k;
s=s+feval(f,x);

end
s=h*(feval(f,a)+feval(f,b)/2+h*s;

Program 7.2 (Composite Simpson Rule). To approximate the integral
∫ b
a f(x)dx = h

3
(f(a) + f(b)) + 2h

3

M−1∑
k=1

f(x2k) + 4h
3

M∑
k=1

f(x2k−1)

by sample f(x) at the 2M + 1 equally spaced points xk = a + kh, for k = 0, 1, 2,
. . . , 2M . Notice that x0 = a and x2M = b.
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Function s=simprl(f,a,b,M)
%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - M is the number of subintervals
%Output - s is the simpson rule sum
h=(b-a)/(2*M);
s1=0
s2=0;
for k=1:M

x=a+h*(2k-1);
s1=s1+feval(f,x);

end
for k=1:(M-1)

x=a+h+2*k;
s2=s2+feval(f,x);

end
s=h*(feval(f,a)+feval(f,b)+4*s1+2*s2)/3;

4.3 Exercises For Composite Trapezoidal and Simp-

son’s Rule

1. (i) Approximate each integral using the composite trapezoidal rule with
M = 10.

(ii) Approximate each integral using the composite Simpson rule with
M = 5.

(a)
∫ 1
−1(1 + x2)−1dx (b)

∫ 1
0 (2 + sin(2

√
x)dx (c)

∫ 4
0.25 dx/

√
x

(d)
∫ 4
0 x2e−xdx (e)

∫ 2
0 2x cos(x)dx (f)

∫ π
0 sin(2x)e−xdx

2. Length of a curve. The arc length of the curve y = f(x) over the interval
a ≤ x ≤ b is

length =
∫ b

a

√
1 + (f ′(x)2)dx

(i) Approximate the arc length of each function using the composite trape-
zoidal rule with M = 10.

(ii) Approximate the arc length of each function using the composite Simp-
son rule with M = 5.

(ii) Approximate the surface area using the composite Simpson rule with
M = 5.

(a) f(x) = x3 for 0 ≤ x ≤ 1
(b) f(x) = sin(x) for 0 ≤ x ≤ π/4
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(c) f(x) = e−x for 0 ≤ x ≤ 1
4. (a) Verify that the trapezoidal rule (M = 1, h = 1) is exact for polynomials

of degree ≤ of the form f(x) = c1x + c0 over [0, 1].
(b) Use the integrand f(x) = c2x

2 and verify that the error term for the
trapezoidal rule M = 1, h = 1) over the interval [0, 1] is

ET (f, h) =
(b− a)f (2)h2

12
.

5. (a) Verify that Simpson’s rule (M = 1, h = 1) is exact for polynomials of
degree ≤ 3 of form f(x) = c3x

3 + c2x
2 + c1x + c0 over [0, 2].

(b) Use the integrand f(x) = c4x
4 and verify that the error term for

Simpson’s rule (M = 1, h = 1) over the interval [0, 2] is

ES(f, h) =
(b− a)f (4)(c)h4

180

6. Derive the trapezoidal rule M = 1, h = 1) by using the method of undeter-
mined coefficients.
(a) Find the constants w0 and w1 so that

∫ 1
0 g(t)dt = w0g(0) + w1g(1) is

exact for the two functions g(t) = 1 and g(t) = t.
(b) Use the relation f(x0 + ht) = g(t) and the change of variable x = x0 + ht

and dx = hdt to translate the trapezoidal rule over [0, 1] to the interval [x0, x1].
Hint for part (a). You will get a linear system involving the two unknowns w0, and

w1.
7. Derive Simpson’s rule (M = 1, h = 1) by using the method of undetermined
coefficients.

(a) Find the constants w0, w1, and w2 so that
∫ 2
0 g(t)dt = w0g(0)+w1g(1)+w2g(2)

is exact for the three functions g(t) = 1, g(t) = t, and g(t) = t2.
(b) Use the relation f(x0 + ht) = g(t) and the change of variable x = x0 + ht and

dx = hdt to translate the trapezoidal rule over [0, 2] to the interval [x0, x2].
Hint for part (a) You will get a linear system involving the three unknowns w0, w1,

and w2.
8. Determine the number M and the interval width h so that the composite trapezoidal
rule for M subintervals can be used to compute the given integral with an accuracy of
5× 10−9.

(a)
∫ π/6

−π/6
cos(x)dx (b)

∫ 3

2

1

5− x
dx (c)

∫ 2

0
xe−xdx

Hint for part (c) f (2)(x) = (x− 2)e−x.
9. Determine the number M and the interval width h so that the composite Simpson
rule for 2M subintervals can be used to compute the given integral with an accuracy
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of 5× 10−9.

(a)
∫ π/6

−π/6
cos(x)dx (b)

∫ 3

2

1

5− x
dx (c)

∫ 2

0
xe−xdx

Hint for part (c) f (4)(x) = (x− 4)e−x.
CHQP .7NUMERICAL INTEGRATION 10.consider the definite integral .The fol-

lowing table gives approximations using the composite trapezoidal rule .Calculate and
confirm that the order is 11.Consider the definite integral .The following table gives
approximations using the composite Simpson rule .Calculate and confirm that the or-
der is 12.Midpoint rule .The midpoint rule on is (a) Expand ,the ant antiderivative
of, in a Taylor series about and establish the midpoint rule on (b) Use part (a) and
shoe that the composite midpoint rule for approximating the integral of is This is
an approximation to the integral of over and we write (c) Show that the error term
for part is 13.Use the midpoint rule with to approximate the integrals in Exercise 1.
14.Prove Corollary 7.3. SEC.7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S
RULE Algorithms and Programs 1.(a) For each integral in Exercise 1,compute Mand
the interval width h so that the composite trapezoidal rule can be used to compute the
given integral with an accuracy of nine decimal places .Use Program 7.1 to approximate
each integral. (b )For each integral in Exercise 1, compute M and the interval width h
so that the composite Simpson’s rule can be used to compute the given integral with an
accuracy of nine4 decimal places .Use Program 7.2 to approximate each integral 2.Use
Program 7.2 to approximate the definite integrals in Exercise 2 with an accuracy of 11
decimal places. 3.The composite trapezoidal rule can adapted to integrate a function
known only at a set of points .Adapt Program 7.1 to approximate the integral of a
function over an interval that passes through M given points (Note. The nodes need
not be equally spaced .)Use this program to approximate the integral of a function that
passes through the points 5.Modify Program 7.1 so that it uses the composite midpoint
rule (Exercise 12)to approximate the integral of .Use this program to approximate the
definite integrals in Exercise 1 with an accuracy of 11decimal places. 6.Obtain approx-
imations to each of the following definite integrals with an accuracy of ten decimal
places.Use any of the programs from this section 7.The following example shows how
Simpson’s rule can be used to approximate the solution of an integral equation .The
equation be solved using Simpson’s rule with; then let Substituting into equation (1)
yields the system of Linear equations: Subsuming the solution of system into equa-
tion and simplifying yields the approximation (a) As a check, substitute the solution
right-hand side of the integral equation, integrate and simplify the right-hand side, and
compare the result with the approximation in (3) (b) Use the composite Simpson rule
with to approximate the solution of the integral equation Use the procedure outlined
in part (a )to check your solution.
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4.4 Recursive Rules and Romberg Integration

In this section we show how to compute Simpson approximations with a special linear
combination of trapezoidal rules. The approximation will have greater accuracy if one
uses a larger number of subintervals. How many should we choose? The sequential
process helps answer this question by trying two subintervals, four subintervals, and
so on, until the desired accuracy is obtained. First, a sequence {T (J)} of trapezoidal
rule approximations must be generated. As the number of subintervals is doubled, the
number of function values is roughly doubled, because the function must be evaluated
at all the previous points and at the midpoints of the previous subintervals (see Fig-
ure 2.8). Theorem 2.4 explains how to eliminate redundant function evaluations and
additions.

Theorem 7.4 (Successive Trapezoidal Rules). Suppose that J ≥ 1 and the points
{xk = a+kh} subdivide [a, b] into 2J = 2M subintervals of equal width h = (b−a)/2J .
The trapezoidal rules T (f, h) and T (f, 2h) obey the relationship

T (f, h) =
T (f, 2h)

2
+ h

M∑

k=1

f(x2k−1). (4.45)

Definition 2.3 (Sequence of Trapezoidal Rules). Define T (0) = (h/2)(f(a) +
f(b)), which is the trapezoidal rule with step size h = b. Then for each J ≥ 1 define
T (J) = T (f, h), where T (f, h) is the trapezoidal rule with step size h = (b− a)/2J .

Corollary 7.4 (Recursive Trapezoidal Rule). Start with T (0) = (h/2)(f(a) +
f(b)). Then a sequence of trapezoidal rules {T (J)} is generated by the recursive for-
mula

T (J) =
T (J − 1)

2
+ h

M∑

k=1

f(x2k−1) for J = 1, 2, . . . , (4.46)

where h = (b− a)/2J and {xk = a + kh}.
Proof. For the even nodes x0 < x2 < · · · < x2M−2 < x2M , we use the trapezoidal rule
with step size 2h:

T (J − 1) =
2h

2
(f0 + 2f2 + 2f4 + · · ·+ 2f2M−4 + 2f2M−2 + f2M). (4.47)

For all of the nodes x0 < x1 < x2 < · · · < x2M−1 < x2M , we use the trapezoidal rule
with step size h:

T (J) =
h

2
(f0 + 2f1 + 2f2 + · · ·+ 2f2M−2 + 2f2M−1 + f2M). (4.48)

Collecting the even and odd subscripts in (2.48) yields

T (J) =
h

2
(f0 + 2f2 + · · ·+ 2f2M−2 + f2M) + h

M∑

k=1

f2k−1. (4.49)
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Substituting (2.47) into (2.49) results in T (J) = T (J − 1)/2 + h
∑M

k=1 f2k−1, and the
proof of the theorem is complete.

Example 2.11. Use the sequential trapezoidal rule to compute the approximations
T (0), T (1), T (2), and T (3) for the integral

∫ 5
1 dx/x = ln(5)− ln(1) = 1.609437912.

Table 2.4 show the nine values required to compute T (3) and the midpoints required
to compute T (1), T (2), and T (3). Details for obtaining the results are as follows:

Table 2.4 The Nine Points Used to Compute T (3) and the
Midpoints Required to Compute T (1), T (2), and T (3)

x f(x) = 1
x

T (0) T (1) T (2) T (3)
1.0 1.000000 1.000000
1.5 0.666667 0.666667
2.0 0.500000 0.500000
2.5 0.400000 0.400000
3.0 0.333333 0.333333
3.5 0.285714 0.285714
4.0 0.250000 0.250000
4.5 0.222222 0.222222
5.0 0.200000 0.200000

When h = 4 : T (0) =
4

2
(1.000000 + 0.200000) = 2.400000.

When h = 2 : T (1) =
T (0)

2
+ 2(0.333333)

= 1.200000 + 0.666666 = 1.866666.

When h = 1 : T (2) =
T (1)

2
+ 1(0.500000 + 0.250000)

= 0.933333 + 0.750000 = 1.683333.

When h =
1

2
: T (3) =

T (2)

2
+

1

2
(0.666667 + 0.400000

+0.285714 + 0.222222)

= 0.8416667 + 0.787302 = 1.628968.

Our next result shows an important relationship between the trapezoidal rule and
Simpson’s rule. When the t5rapezoidal rule is computed using step sizes 2h and h,
the result is T (f, 2h) and T (f, h), respectively. These values are combined to obtain
Simpson’s rule:

S(f, h) =
4T (f, h)− T (f, 2h)

3
. (4.50)

28



Theorem 2.5 (Recursive Simpson Rules). Suppose that {T (J)} is the sequence
of trapezoidal rules generated by Corollary 2.4. If J ≥ 1 and S(J) is Simpson’s rule for
2J subintervals of [a, b], then S(J) and the trapezoidal rules T (J − 1) and T (J) obey
the relationship

S(J) =
4T (J)− T (J − 1)

3
for J = 1, 2, . . . . (4.51)

Proof. The trapezoidal rule T (J) with step size h yields the approximation

∫ b

a
f(x)dx ≈ h

2
(f0 + 2f1 + 2f2 + · · ·+ 2f2M−2 + 2f2M−1 + f2M) = T (J). (4.52)

The trapezoidal rule T (J − 1) with step size 2h produces

∫ b

a
f(x)dx ≈ h(f0 + 2f2 + · · ·+ 2f2M−2 + f2M) = T (J − 1). (4.53)

Multiplying relation (2.52) by 4 yields

4
∫ b

a
f(x)dx ≈ h(2f0 + 4f1 + 4f2 + · · ·+ 4f2M−2 + 4f2M−1 + 2f2M) = 4T (J). (4.54)

Now subtract(2.53)from (2.54)and the result is

3
∫ b

a
f(x)dx ≈ h(f0+4f1+2f2+· · ·+2f2M−2+4f2M−1+f2M) = 4T (J)−T (J−1). (4.55)

This can be rearranged to obtain

∫ b

a
f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + · · ·+ 2f2M−2 + 4f2M−1 + f2M) =

4T (J)− T (J − 1)

3
.

(4.56)
The middle term in (2.57) is Simpson’s rule S(J) = S(f, h) and hence the theorem is
proved.

Example 2.12. Use the sequential Simpson rule to compute the approximations
S(1), S(2), and S(3) for the integral of Example 2.11.

Using the results of Example 2.11 and formula (2.50) with J = 1, 2, and 3, we
computes

S(1) =
4T (1)− T (0)

3
=

4(1.866666)− 2.400000

3
= 1.688888.

S(2) =
4T (2)− T (1)

3
=

4(1.683333)− 1.8666666

3
= 1.622222

29



S(3) =
4T (3)− T (2)

3
=

4(1.628968)− 1.683333

3
= 1.610846.

In Section 2.1 the formula for Boole’s rule was given in Theorem 2.1. It was obtained
by integrating the Lagrange polynomial of degree 4 based on the nodes x0, x1, x2, x3, and
x4. An alternative method for establishing Boole’s rule is mentioned in the exercises.
When it is applied M times over 4M equally spaced subintervals of [a, b] of step size
h = (b− a)/(4M), we call it the composite Boole rule:

B(f, h) =
2h

45

M∑

k=1

(7f4k−4 + 32f4k−3 + 12f4k−2 + 32f4k−1 + 7f4k). (4.57)

The next result gives the relationship between the sequential Boole and Simpson rules.

Theorem 2.6 (Recursive Boole Rules). Suppose that {S(J)} is the sequence
of Simpson’s rules generated by Theorem 2.5. If J ≥ 2 and B(J) is Boole’s rule for
2J subintervals of [a, b], then B(J) and Simpson’s rules S(J − 1) and S(J) obey the
relationship

B(J) =
16S(J)− S(J − 1)

15
for J = 2, 3, . . . . (4.58)

Proof. The proof is left as an exercise for reader.

Example 2.13. Use the sequential Boole rule to compute the approximations B(2)
and B(3) for the integral of Example 2.11.

Using the results of Example 2.12 and formula (2.59) with J = 2 and 3, we compute

B(2) =
16S(2)− S(1)

15
+

16(1.622222)− 1.688888

15
= 1.617778.

B(3) =
16S(3)− S(2)

15
=

16(1.610846)− 1.622222

15
= 1.610088.

The reader may wonder what we are leading up to. We will now show that for-
mulas (2.50)and (2.59) are special cases of the process of Romberg integration. Let us
announce that the next level of approximation for the integral of Example 2.11 is

64B(3)−B(2)

63
=

64(1.610088)− 1.617778

63
= 1.609490,

and this answer gives an accuracy of five decimal places.

4.5 Romberg Integration

In Section 2.2 we saw that the error terms ET (f, h) and ES(f, h) for the composite
trapezoidal rule and composite Simpson rule are of order O(h2) and O(h4), respectively.
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It is not difficult to show that the error term EB(f, h) for the composite Boole rule is
of the order O(h6). Thus we have the pattern

∫ b

a
f(x)dx = T (f, h) + O(h2). (4.59)

∫ b

a
f(x)dx = S(f, h) + O(h4). (4.60)

∫ b

a
f(x)dx = B(f, h) + O(h6). (4.61)

The pattern for the remainders in (2.60) through (2.62) is extended in the fol-
lowing sense. Suppose that an approximation rule is used with step sizes h and 2h;
then an algebraic manipulation of the two answers is used to produce an improved an-
swer. Each successive level of improvement increases the order of the error term from
O(h2N) to O(h2N+2). This process, called Romberg integration , has its strengths
and weaknesses.

The Newton-Cotes rules are seldom used past Boole’s rule. This is because the nine-
point Newton-Cotes quadrature rule involves negative weights, and all the rules past
the ten-point rule involve negative weights. This could introduce loss of significance
error due to round off. The Romberg method has the advantages that all the weights
are positive and the equally spaced abscissas are easy to compute.

A computational weakness of Romberg integration is that twice as many function
evaluations are needed to decrease the error from O(h2N) to O(h2N+2). The use of the
sequential rules will help keep the number of computations down. The development of
Romberg integration relies on the theoretical assumption that, if f ∈ CN [a, b] for all
N , then the error term for the trapezoidal rule can be represented a series involving
only even powers of h; that is,

∫ b

a
f(x)dx = T (f, h) + ET (f, h), (4.62)

where
ET (f, h) = a1h

2 + a2h
4 + a3h

6 + · · · , (4.63)

A derivation of formula (2.64) can be found in Reference [153].
Since only even powers of h can occur in (1.64), the Richardson improvement process

is used successively first to eliminate a1, next to eliminate a2, then to eliminate a3. and
so on. This process generates quadrature formulas whose error terms have even orders
O(h4), O(h6), O(h8), and so on. We shall show that the first improvement is Simpson’s
rule for 2M intervals. Start with T (f, 2h) and T (f, h) and the equations

∫ b

a
f(x)dx = T (f, 2h) + a14h

2 + a216h4 + a364h6 + · · · (4.64)
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and ∫ b

a
f(x)dx = T (f, h) + a1h

2 + a2h
4 + a3h

6 + · · · (4.65)

Multiply equation (2.66) by 4 and obtain

4
∫ b

a
f(x)dx = 4T (f, h) + a14h

2 + a24h
4 + a34h

6 + · · · . (4.66)

Eliminate a1 by subtracting (2.65) from (2.67). The result is

3
∫ b

a
f(x)dx = 4T (f, h)− T (f, 2h)− a212h4 − a360h6 + · · · . (4.67)

Now divide equation (2.68) by 3 and rename the coefficients in the series:

∫ b

a
f(x)dx =

4T (f, h)− T (f, 2h)

3
+ b1h

4 + b2h
6 + · · · . (4.68)

As noted in (2.49), the first quantity on the right side of (2.69) is Simpson’s rule S(f, h).
This shows that ES(f, h) involves only even powers of h:

∫ b

a
f(x)dx = S(f, h) + b1h

4 + b2h
6 + b3h

8 + · · · . (4.69)

To show that the second improvement is Boole’s rule, start with (2.70) and write
down the formula involving S(f, 2h):

∫ b

a
f(x)dx = S(f, 2h) + b116h4 + b264h6 + b3256h8 + · · · . (4.70)

When b1 is eliminated from (2.70) and (2.71), the result involves Boole’s rule:

∫ b

a
f(x)dx =

16S(f, h)− S(f, 2h)

15
− b248h6

15
− b3240h8

15
· · · (4.71)

= B(f, h)− b248h6

15
− b3240h8

15
· · · .

The general pattern for romberg integration relies on lemma 2.1.

Lemma 2.1 (Richardson’s Improvement for Romberg integration). Given
two approximations R(2h,K − 1) and R(h,K − 1) for the quantity Q that satisfy

Q = R(h,K − 1) + c1h
2K + c2h

2K+2 + · · · (4.72)

and
Q = R(2h,K − 1) + c14

Kh2K + c24
K+1h2K+2 + · · · , (4.73)

32



an improved approximation has the form

Q =
4KR(h,K − 1)−R(2h,K − 1)

4K − 1
+ O(h2K+2). (4.74)

The proof is straightforward and is left for the reader.

Definition 2.4. Define the sequence {R(J,K) : J ≥ K}∞J=0 of quadrature formu-
las for f(x) over [a, b] as follows

R(J, 0) = T (J) for J ≥ 0, is the sequential trapezoidal rule.
R(J, 1) = S(J) for J ≥ 1, is the sequential Simpson rule.
R(J, 2) = B(J) for J ≥ 2, is the sequential Boole’s rule.

(4.75)

The starting rules, {R(J, 0)}, are used to generate the first improvement, {R(J, 1)},
which in turn is used to generate the second improvement, {R(J, 2)}. We have already
seen the patterns

R(J, 1) =
41R(J, 0)−R(J − 1, 0)

41 − 1
for J ≥ 1 (4.76)

R(J, 2) =
42R(J, 1)−R(J − 1, 1)

42 − 1
for J ≥ 2,

which are rules in (2.69) and (2.72) stated using the notation in (2.71). The general
rule for constructing improvements is

R(J,K) =
4KR(J,K − 1)−R(J − 1, K − 1)

4K − 1
for J ≥ K. (4.77)

Table 2.5 Romberg Integration Tableau

J R(J,0) R(J,1) R(J,2) R(J,3) R(J,4)
0 R(0,0)
1

Table 7.6 Romberg Integration Tableau for example 7.14
For computational purposes, the values are arranged in the romberg integration

tableau given in table 7.5. Example 7.14. Use Romberg integration to find approxima-
tions for the definite integral The computations are given in table 7.6. In each column
the numbers are converging to the value 2.038197427067 the values in the simpson’s
rule column converge faster than the values in the trapezoidal rule column. For this
example, convergence in columns to the right is faster than the adjacent column to the
left. Convergence of the Romberg values in table 7.6 is easier to see if we lood at the
error terms . suppose that the interval width is a and that the higher derivatives of
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are of the same magnitude. The error in column of the romberg table diminishes by
about a factor of as one progresses down its rows. The errors diminish by a factor of ,
the errors diminish by a factor of 1/16, and so on. This can be observed by inspecting
the entries in Table 7.7

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 377 Table 7.7
Romberg Error Tobleau for Example 7.14 Theorem 7.7 (Precision of Romberg Inte-
gration). Assume that Then the truncation error term for Romberg approximation is
given in the formula Where = , is a constant that depends on, and ;see Reference [153],
page 126. Example 7.15. Apply Theorem 7.7 and show that The integrand is ,and .
Thus the value = will make the error term identically zero. A numerical computation
will produce =1024. Program 7.3 (recursive Trapezoidal Rule). To approximate By
using the trapezoidal rule and successively increasing the number of subintervals of
.The iteration samples +1 equally spaced points. Function T = rctrap (f, a, b,n)

378 CHAP. 7 NUMERICAL INTEGRATION M=1; H=b-a; T=zeros (1, n+1);
T(1) =h*(feval (f,a)+feval(f,b))/2; For j=1:n M=2*M; h=h/2; s=0; for k=1:M/2
x=a+h*(2*k-1); s=s+feval(f,x); end T(j+1)=T(j)/2+h*s; End Program 7.4 (Romberg
Integration). To approximate the integral by generating a table of approximations
for and using as the final answer. The approximations are stored in a special lower-
rtiangular matrix. The elements of column 0 are computed using the sequential trape-
zoidal rule based on 2 subintervals of [a, b]; then is computed using Romberg’s rule.
The elements of row are The program is terminated in the st row when. Function [R,
quad, err, h]=romber(f, a, b, n, tol)

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 379 M=1; h=b-
a; err=1; J=0; R=zeros (4, 4); R(1,1) =h*(feval(f,a)+feval(f,b))/2; While J=J+1;
h=h/2; s=0; for p=1:M x=a+h*(2*p-1); s=s+feval(f,x); end R(J+1, 1)=R(J, 1)/2+h*s;
M=2*M; for K=1:J R(J+1, K+1)=R(J+1, K)+(R(J+1, K)-R(J, K))/(4K − 1); end
err=abs(R(J, J)-R(J+1, K+1)); end quad=R(J+1, J+1); Exercises for Recursive Rules
and Romberg Integration 1.For each of the following definite integrals, construct (by
hand) a Romberg table (Table 7.5) with three rows.

380 CHAP. 7 NUMERICAL INTEGRATION 2.Assume that the sequential trape-
zoidal rule converges to . (a) Show that the sequential Simpson rule converges to. (b)
Show that the sequential Boole rule converges to 3.(a) Verify that Boole’s rule is exact
for polynomials of degree of the form. (c) Use the integrand and verify that the error
term for Boole’s rule over the interval is 4.Derive Boole’s rule by using the method of
undetermined coefficients: Find the constants and so that is exact for the five func-
tions and you will get the linear system. 5.Establish the relation for the case .Use
the following information: and 6.Simpson’s . Consider the trapezoidal rules over the
closed interval: with step size 3h,and with step size . Show that the linear combination
produces Simpson’ rule. 7.Use equations (25) and (26) to establish equatio (27). 8.Use
equations (28) and (29) to establish equation (30).

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 381 9. Deter-
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mine the smallest integer K for which 10.Romberg integration was used to approximate
the integrals , and the results are given in the following table: (a) Use the change of
variable and and show that the two integrals have the same numerical (ii). 11.Romberg
integration based on the midpoint rule. The composite midpoint rule is competitive
with the composite trapezoidal rule with respet to efficiency and the speed of con-
vergence. Use the following facts about the midpoint rule: The rule and the error
term are given by and (a) Start with Develop the sequential midpoint rule for comput-
ing (b) Show how the sequential midpoint rule can be used in place of the sequential
trapezoidal rule in Romberg integration. 382 CHAP. 7 NUMERICAL INTEGRATION
Algorithms and Programs 1.Use Program 7.4 to approximate the definite integrals in
Exercise l with an accuracy of ll decimal places. 2.Use Program 7.4 to approximate the
following two definite integrals with an accuracy of 10 decimal places. The exact value
of each definite integral is . Explain any apparent differences in the rates of convergence
of the two Romberg sequences. 3.The normal probability density funcion is , and the
cumulative distribution is a function defined by the integral Compute values for , and
that have eight digits of accuracy. 4.Modiry Program 7.3 so that it will also compute
values for the sequential Simpson and Boole rules. 5.Modify Program 7.3 so that it will
also compute values for the sequential Simpson and Boole rules. 6.Modify Program 7.4
so that it uses the sequential midpoint rule to perform Romberg integration (use the
results of Exercise ll). Use your program to approximate the following integrals with an
accuracy of 10 decimal places. 7.In Program 7.4 the approximations to a given definite
integral are stored on the main diagonal of a lower-triangular matrix. Modify Program
7.4 so that the rows of the Romberg integration tableau are sequentially computed
and stored in matrix R; hence it saves space. Test your program on the integrals in
Exercise l. Adaptive Quadrature The composite quadrature rules necessitate the use
of equally spaced points. Typically, a small step size h was used uniformly acroff the
entire interval of integration to ensure the overall accuracy. This does not take into ac-
count that some portions of the curve may have large functional variations that require
more attention than other portions of the curve.it is useful to introduce a method that
adjusts the step size to be smaller over portions of the curve where a larger functional
variation occurs. This technique is called adaptive quadrature. The method is based
on simpson’ s rule. Simpson’s rule uses two subintervals over:

SEC. 7.4 ADAPTIVE QUADRATURE 383 where is the center of = furthermore,
if so that Refinement A composite Simpson rule using four subintervals of can be per-
formed by bisecting this interval into two equal subintervals and and applying formula
(1) recursively over each piece. Only two additional evaluations of are needed, and the
result is wherh is the midpoint of ,and is the midpoint . in formula (3) the step size is
h/2, which accounts for the factors h/6 on the right side of the equation. Furthermore,
if, there exists a value so that Assume that ; then the right sides of equations (2) and
(4) are used to obtain the relation Which can be written as Then (6) is substituted in
(4) to obtain the error estimate: Because of the assumption , the fraction is replaced

35



with on the right side of (7) when implementing the method. This justifies the following
test.

384 CHAP. 7 NUMERICAL INTEGRATION Accuracy Test Assume that the tol-
erance is specified for the interval. If we infer that thus the composite simpson rule (3)
is used to approximate the integral and the error bound for this approximation over
is. Adaptive quadrature is implemented by applying simpson’s rules (1) and (3). Start
with, where is the tolerance for numerical quadrature over. The interval is refined into
subintervals labeled and . if the accuracy test (8) is passed, quadrature formula (3) is
applied to and we are done. If the test in (8) fails, the two subintervals are relabeled
and , over which we use the tolerances and , respectively. Thus we have two intervals
with their associated tolerances to consider for further refinement and testing: and ,
where ,if adaptive quadrature must be continued, the smaller intervals nust be refined
and tested, each with its own associated tolerance. In the second step we first consider
and refine the interval into and . if they pass the accuracy test (8) with the tolerance,
quadrature formula (3) is applied to and accuracy has been achieved over this interval.
If they fail the test in (8) with the tolerance, each subinterval and must be refined and
tested in the third step with the reduced tolerance Moreover, the second step involves
looking at and refining into and . if they pass the accuracy test (8) with tolerance
, quadrature formula (3) is applied to and accuracy is achieved over this interval. If
they fail the test in (8) with the tolerance, each subinterval and must be refined and
tested in the third step with the reduced tolerancee. Therefore, the second step pro-
duces either three or four intervals, which we relabel consecutively. The three intervals
would be relabeled to produce. Where . in the case of four intervals, we would obtain ,
where. If adaptive quadrature must be continued, the smaller intervals must be tested,
each with its own associated tolerance. The error term in (4) shows that each time a
refinement is made over a smaller subinterval there is a reduction of error by about

SEC. 7.4 ADAPTIVE QUADRATURE 385 Table 7.8 Adaptive Quadrature Com-
putations for A factor of . Thus the process will terminate after a finite number of
steps. The booddeeping for implementing the metheod includes a sentinel variable
which indicates if a particular subinterval has passed its accuracy test. To avoid un-
necessary additional evaluations of, the function values can be included in a data list
corresponding to each subinterval. The details are shown in program 7.6. Example
7.16. Use adaptive quadrature to numerically approximate the value of the definite
integral with the starting tolerance =0.00001. Implementation of the method revealed
that 20 subintervals are needed. Table 7.8 lists each interval, composite simpson rule ,
the error bound for this approximation, and the associated tolerance . the approximate
value of the integral is obtained by summing the simpson rule approximations to get

386 CHAP. 7 NUMERICAL INTEGRATION The true value of the integral is
Therefore, the error for adaptive quadrature is Which is smaller than the specified
tolerance =0.00001. the adaptive methoe involves 20 subintervals of [0.4]. and 81
function evaluations were used. Figure 7.9 shows the graph of and these 20 subintervals.
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The intervals are smaller where a larger functional variation occurs mear the origin. In
the refinement and testing process in the adaptive method, the first four intervals were
bisected into eight subintervals of width 0.03125. if this uniform spacing is continued
throughout the interval [0.4], M = 128 subintervals are required for the composite
simpson rule, which yields the approximation 1.54878844029, which is in error by the
amount 0.00000006776. although the composite simpson method contains half the
error of the adaptive quadrature method, 176 more function evaluations are required.
This gain of accuracy is negligible; hence there is a considerable saving of computing
effort with the adaptive method. Program 7.5, srule, is a modification of simpson’s
rule from section 7.1. the output is a vector Z that contains the results of simpson’s
rule on the interval . program 7.6 calls srule as a subroutine to carry out simpson’s
rule on each of the subintervals generated by the adaptive quadrature process.

SEC. 7.4 ADAPTIVE QUADRATURE 387 Program 7.5 (sipson’s rule). To approx-
imate the integral By using simpson’s rule, where Function Z = srule (f, a0, b0, to10)
h= C=zeros (1,3); C=feval S= S2=S; Toll=to10; Err=to10; Z=[a0 b0 S S2 err toll];
Program 7.6 produces a matrix srmat, quad (adaptive quadrature approximation to
definite integral) and err (the error bound for the approximation). The rows of srmat
consist of the end points, the simpson’s rule approximation,and the error bound on
each subinterval generated by the adaptive quadrature process. Program 7.6 (adaptive
quadrature using simpson’s rule). To approximate the integral The composite simpson
rule is applied to the 4M subintervals, where and function [srmat, quad, err] =adapt
(f, a, b, tol)

388 CHAP. 7 NUMERICAL INTEGRATION srmat = zeros (30,6); iterating =
0; done = 1 srvec = zeros (1,6); srvec = srule (f, a, b, tol); srmat (1,1:6)=srvec m=1
state=iterating; while(state==iterating) n=m; for j=n:-1:1 p=j srovec=srmat(p,:) err=srovec(5)
tol=srovec(6) if state=done; srlvec=srovec; sr2vec=srovec; a=srovec(1) b=srovec(2)
c=(a+b)/2 err=srovec(5) tol=srovec(6) tol2=tol/2 srlvec=srule(f, a, c, tol2) sr2vec=srule(f,
c, b, tol2) err=abs(srovec(3)-sr1vec(3)-sr2vec(3))/10 if srmat (p,:)=srovec; srmat(p,
4)=srlvec(3)+sr2vec(3) srmat(p,5)=err; else srmat(p+1:m+1,:)=srmat(p:m,:) m=m+1
srmat(p+1,:)=sr2vec; state=iterating; end

SEC. 7.5 GAUSS-LEGENDRE INTEGRATION (OPTIONAL) 389 end end end
quad=sum (srmat(:, 4)) err=sum(abs(srmat(:,5))) srmat=srmat(1:m,1:6) Algorithms
and programs 1.Use program 7.6 to approximate the value of the definite integral. Use
the starting tolerance 2. For each of the definite integrals in problem l construct a
graph analogous to figure 7.9. hint. The first column of srmat contains the end points
(except for b) of the subintervals from the adaptive quadrature process. If t=srmat(:,1)
and z=zeros(length(T))’, then plot (T,Z,’.’) will produce the subintervals (excpt for
the right end point b). 3. Modify Program 7.6 so that Boole’s rule is usec in each
subinterval 4.Uce the modified program in problem 3 to compute approximations and
construct graphs analogous to figure 7.9 for the definite integrals in problem 1.
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4.6 Gauss-Legendre Integration (Optional)

We wish to find the area under the curve

y = f(x), −1 ≤ x ≤ 1.

What method gives the best answer if only two function evaluations are to be made?
We have already seen that the trapezoidal rule is a method for finding the area under
the curve and that it uses two function evaluations at the end points (−1, f(−1)), and
(1, f(1)), But if the graph of y = f(x) is concave down, the error in approximation is
the entire region that lies between the curve and the line segment joining the points
(see Figure 2.10(a)).

If we can use nodes x1 and x2 that lie inside the interval [−1, 1], the line through
the two points (x1, f(x1)) and (x2, f(x2)) crosses the curve, and the area under the line
more closely approximates the area under the curve (see Figure 2.10(b)). The equation
of the line is

y = f(x1) +
(x− x1)(f(x2)− f(x1))

x2 − x1

(4.78)

and the area of the trapezoid under the line is

Atrap =
2x2

x2 − x1

f(x1)− 2x1

x2 − x1

f(x2). (4.79)

Notice that the trapezoidal rule is a special case of (2.79). When we choose x1 =
−1, x2 = 1, and h = 2, then

T (f, h) =
2

2
f(x1)− −2

2
f(x2) = f(x1) + f(x2).

We shall use the method of undetermined coefficients to find the abscissas x1, x2

and weights w1, w2 so that the formula

∫ 1

−1
f(x)dx ≈ w1f(x1) + w2f(x2) (4.80)

is exact for cubic polynomials (i.e., f(x) = a3x
3 + a2x

2 + a1x + a0). Since four coeffi-
cients w1, w2, x1, and x2 need to be determined in equation (2.80), we can select four
conditions to be satisfied. Using the fact that integration is additive, it will suffice to
require that (2.80) be exact for the four functions f(x) = 1, x, x2, x3. The four integral
conditions are

f(x) = 1 :
∫ 1

−1
1dx = 2 = w1 + w2

f(x) = x :
∫ 1

−1
xdx = 0 = w1x1 + w2x2
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f(x) = x2
∫ 1

−1
x2 =

2

3
= w1x

2
1 + w2x

2
2 (4.81)

f(x) = x3
∫ 1

−1
x3dx = 0 = w1x

3
1 + x3

2.

Now solve the system of nonlinear equations

w1 + w2 = 2 (4.82)

w1x1 = −w2x2 (4.83)

w1x
2
1 + w2x

2
2 =

2

3
(4.84)

w1x
3
1 = −w2x

3
2 (4.85)

We can divide (2.85) by (2.83) and the result is

x2
1 = x2

2 or x1 = −x2. (4.86)

Use (2.86) and divide (2.83) by x1 on the left and −x2 on the right to get

w1 = w2. (4.87)

Substituting (2.87) into (2.82) results in w1 + w2 = 2. Hence

w1 = w2 = 1. (4.88)

Now using (2.88) and (2.86) in (2.84), we write

w1x
2
1 + w2x

2
2 = x2

2 + x2
2 =

2

3
for x2

2 =
1

3
(4.89)

Finally, from (2.89) and (2.86) we see that the nodes are

x1 = x2 = 1/31/2 ≈ 0.5773502692.

We have found the nodes and weights that make up the two-point Gauss-Legendre
rule. Since the formula is exact for cubic equations, the error term will involve the
fourth derivative. A discussion of the error term can be found in Reference [41].

Theorem 2.8 (Gauss-Legendre Two-Point Rule). If f is continuous on [−1, 1],
then ∫ 1

−1
f(x)dx ≈ G2(f) = f(

−1√
3
) + f(

1√
3
). (4.90)

The Gauss-legendre rule G2(f) has degree of precision n = 3. If f ∈ C4[−1, 1], then

∫ 1

−1
f(x)dx ≈ G2(f) = f(

−1√
3
) + f(

1√
3
) + E2(f). (4.91)
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where

E2(f) =
f (4)(c)

135
. (4.92)

Example 2.17. Use the two-point Gauss-Legendre rule to approximate

∫ 1

−1

dx

x + 2
= ln(3)− ln(1) ≈ 1.09861

and compare the result with the trapezoidal rule T (f, h) with h = 2 and Simpson’s
rule S(f, h) with h = 1.

Let G2(f) denote the two-point Gauss-Legendre rule; then

G2(f) = f(−0.57735) + f(0.57735) = 0.70291 + 0.38800 = 1.09091,

T (f, 2) = f(−1.00000) + f(1.00000) = 1.00000 + 0.33333 = 1.33333,

S(f, 1) =
f(−1) + 4f(0) + f(1)

3
=

1 + 2 + 1
3

3
= 1.11111.

The errors are 0.00770, 0.23472, and 0.01250, respectively, so the Gauss-Legendre rule
is seen to be best. Notice that the Gauss-Legendre rule required only two function
evaluations and Simpson’s rule required three. In this example the size of the error for
G2(f) is about 61% of the size of the error for S(f, 1)

The general N -point Gauss-Legendre rule is exact for polynomial functions of degree
≤ 2N − 1, and the numerical integration formula is

GN(f) = wN,1f(xN,1) + wN,2f(xN,2) + · · ·+ wN,Nf(xN,N). (4.93)

Table 2.9 Gauss-Legendre Abscissas and Weights

∫ 1
−1 f(x)dx =

∑N
k=1 wN,kf(xN,k) + EN(f)
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N abscissas, xN,k Weights, wN,k Truncation error, EN(f)

2
0.5773502692

−0.5773502692
1.0000000000
1.0000000000

f (4)(c)
135

3
±0.7745966692

0.0000000000
0.5555555556
0.8888888888

f (6)(c)
15,750

4
±0.8611363116
±0.3399810436

0.3478548451
0.6521451549

f (8)(c)
3,472,875

5
±0.9061798459
±0.5384693101

0.0000000000

0.2369268851
0.4786286705
0.5688888888

f (10)(c)
1,237,732,650

6
±0.9324695142
±0.6612093865
±0.2386191861

0.1713244924
0.3607615730
0.4679139346

f (12)(c)213(6!)4

(12!)313!

7

±0.9491079123
±0.7415311856
±0.4058451514

0.0000000000

0.1294849662
0.2797053915
0.3818300505
0.4179591837

f (14)215(8!)4 (c)
(14!)315!

8

±0.9602898565
±0.7966664774
±0.5255324099
±0.1834346425

0.1012285363
0.2223810345
0.3137066459
0.3626837834

f (16)(c)217(8!)4

(16!)317!

The abscissas xN,k and weights wN,k to be used have been tabulated and are easily
available; Table 2.9 gives the values up to eight points. Also included in the table is
the form of the error term EN(f) that corresponds to GN(f), and it can be used to
determine the accuracy of the Gauss-Legendre integration formula.

The values in table 2.9 in general have no easy representation. This fact makes the
method less attractive for humans to use when hand calculations are required. But
once the values are stored in a computer it is easy to call them up when needed. The
nodes are actually roots of the Legendre polynomials, and the corresponding weights
must be obtained by solving a system of equations. For the three-point Gauss-Legendre
rule the nodes are (0.6)1/2, and the corresponding weights are 5/9, 8/9, and 5/9.

Theorem 2.9 (Gauss-Legendre three-point rule). If f is continuous on [−1, 1],
then

∫ 1

−1
f(x)dx ≈ G3(f) =

5f(−
√

3/5) + 8f(0) + 5f(
√

3/5)

9
. (4.94)

The Gauss-Legendre rule G3(f) has degree of precision n = 5. If f ∈ C6[−1, 1], then

∫ 1

−1
f(x)dx =

5f(−
√

3/5) + 8f(0) + 5f(
√

3/5)

9
+ E3(f), (4.95)
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where

E3(f) =
f (6)(c)

15, 750
. (4.96)

Example 2.18. Show that the three-point Gauss-Legendre rule is exact for

∫ 1

−1
5x4dx = 2 = G3(f).

Since the integrand is f(x) = 5x4 and f (6)(x) = 0, we can use (2.96) to see that
E3(f) = 0. But it is instructive to use (2.94) and do the calculations in this case.

G3(f) =
5(5)(0.6)2 + 0 + 5(5)(0.6)2

9
=

18

9
= 2.

The next result shows how to change the variable of integration so that the Gauss-
Legendre rules can be used on the interval [a, b].

Theorem 2.10 (The Gauss-Legendre Translation). Suppose that the abscis-
sas {xN,k}N

k=1 and weights {wN,k}N
k=1 are given for the N -point Gauss-Legendre rule

over [−1, 1]. To apply the rule over the interval [a, b], use the change of variable

t =
a + b

2
+

b− a

2
x and dt =

b− a

2
dx (4.97)

Then the relationship

∫ b

a
f(t)dt =

∫ 1

−1
f

(
a + b

2
+

b− a

2
x

)
b− a

2
dx (4.98)

is used to obtain the quadrature formula

∫ b

a
f(t)dt =

b− a

2

N∑

k=1

wN,kf

(
a + b

2
+

b− a

2
xN,k

)
. (4.99)
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Example 2.19 Use the three-point Gauss-Legendre rule to approximate

∫ 5

1

dt

t
= ln(5)− ln(1) = 1.609438

and compare the result with Boole’s rule B(2) with h = 1.
Here a = 1 and b = 5, so the rule in (2.99) yields

G3(f) = (2)
5f(3− 2(0.6)1/2) + 8f(3 + 0) + 5f(3 + 2(0.6)1/2)

9

= (2)
3.446359 + 2.666667 + 1.099096

9
= 1.602694.

In Example 4.13 we saw that Boole’s rule gave B(2) = 1.617778. The errors are
0.006744 and −0.008340, respectively, so that the Gauss-Legendre rule is slightly better
in this case. Notice that the Gauss-Legendre rule requires three function evaluations
and Boole’s rule requires five. In this example the size of the two errors is about the
same.

Gauss-Legendre integration formulas are extremely accurate, and they should be
considered seriously when many integrals of a similar nature are to be evaluated. In
this case, proceed as follows. Pick a few representative integrals, including some with
the worst behavior that is likely to occur. Determine the number of sample points
N that is needed to obtain the required accuracy. Then fix the value N, and use the
Gauss-Legendre rule with N sample points for all the integrals.

For a given value of N, Program 2.7 requires that the abscissas and weights from
Table 2.9 be saved in 1 × N matrices A and W , respectively. This can be done in
the MATLAB command window or the matrices can be saved as M-files. It would
be expedient to save Table 2.9 in a 35 × 2 matrix G. The first column of G would
contain the abscissas and the second column the corresponding weights. Then, for a
given value of N, the matrices A and W would be submatrices of G. For example, if
N = 3 then A=G(3:5,1)’ and W=G(3:5,2)’.

Program 4.7 (Gauss-Legendre Quadrature). To approximate the integral∫ b
a f(x)dx ≈ b−a

2

∑N
k=1 wN,kf(tN , k)

By sampling f(x) at the N unequally spaced points {tN,k}N
k=1. the changes of variable

t = a+b
2

+ b−a
2

x and dt = b−a
2

dx
are used. The abscissas {xN,k}N

k=1 and the corresponding weights {wN,k}N
k=1 must

be obtained from a table of known values.
Function quad=gauss(f, a, b, A, W)
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4.6.1 Exercises for Gauss-Legendre integration

In Exercises 1 through 4, (a) show that the two integrals are equivalent and (b) calculate
G2(f).

1.
∫ 2

0
6t5dt =

∫ 1

−1
6(x + 1)5dx 2.

∫ 2

0
sin(t)dt =

∫ 1

−1
sin(x + 1)dx

3.
∫ 1

0

sin(t)

t
dt =

∫ 1

−1

sin((x + 1)/2)

x + 1
dx 4.

1√
2π

∫ 1

−1

e−(x+1)2/8

2
dx

5.
1

π

∫ π

0
cos (0.6 sin(t)) dt = 0.5

∫ 1

−1
cos

(
0.6 sin((x + 1)

π

2
)
)

dx

6. Use EN(f) in Table 7.9 and the change of variable given in Theorem 4.10 to find
the smallest integer N so that EN(f) = 0 for

(a)
∫ 2
0 8x7dx = 256 = GN(f).

(b)
∫ 2
0 11x10dx = 2048 = GN(f).

7. Find the roots of the following Legendre polynomials and compare them with the
abscissa in Table 7.9.

(a) P2(x) = (3x2 − 1)/2
(b) P3(x) = (5x3 − 3x)/2
(c) P4(x) = (35x4 − 30x2 + 3)/8

8. The truncation error term for the two-point Gauss-Legendre rule on the closed
interval [−1, 1] is f(4)(c1)/135. The truncation error for Simpson’s rule on [a, b] is
−h5f 4(c2)/90. Compare the truncation error terms when [a, b] = [−1, 1]. Which
method do you think is best? Why?
9. The three-point Gauss-Legendre rule is

∫ 1

−1
f(x)dx ≈ 5f(−(0.6)1/2) + 8f(0) + 5f((0.6)1/2)

9
.

Show that the formula is exact for f(x) = 1, x, x2, x3, x4, x5. Hint. If f is an odd
function (i.e., f(−x) = f(x)), the integral of f over [−1, 1] is zero.
10. The truncation error term for the three-point Gauss-Legendre rule on the inter-
val [−1, 1] is f 6(c1)/15, 750. The truncation error term for Boole’s rule on [a, b] is
−8h7f 6(c2)/945. Compare the error terms terms when [a, b] = [−1, 1]. Which method
is better? Why?
11.Derive the three-point Gauss-Legendre rule using the following steps. Use the fact
that the abscissas are the roots of the Legendre polynomial of degree 3.

x1 = −(0.6)1/2, x2 = 0, x3 = (0.6)1/2.

Find the weights w1, w2, w3 so that the relation
∫ 1

−1
f(x)dx ≈ w1f(−(0.6)1/2) + w2f(0) + w3f((0.6)1/2)
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is exact for the functions f(x) = 1, x, and x2. Hint. First obtain and then solve the
linear system of equations

w1 + w2 + w3 = 2

−(0.6)1/2w1 + (0.6)1/2w3 = 0

0.6w1 + 0.6w3 =
2

3
.

12. In practice, if many integrals of a similar type are evaluated, a preliminary analysis
is made to determine the number of function evaluations required to obtain the desired
accuracy. Suppose that 17 function evaluations are to be made. Compare the Romberg
R(4, 4) with the Gauss-Legendre answer G17(f).

4.6.2 Algorithms and Programs

1. For each of the integrals in exercises l through 5, use Program 7.7 to find G6(f),
G7(f), and G8(f).
2. (a) Modify Program 7.7 so that it will compute G1(f), G2(f), . . . , G8(f) and stop
when the relative error in the approximations GN−1(f) and GN(f) is less than the
preassigned value tol, that is,

2|GN−1(f)−GN(f)|
|GN−1(f) + GN(f)| < tol.

Hint. As discussed at the end of the section, save Table 4.9 in an M-file G as a
35× 2 matrix G.

(b) Use your program from part (a) to approximate the integrals in Exercises l
through 5 with an accuracy of five decimal places.
3. (a) Use the six-point Gauss-Legendre rule to approximate the solution of the integral
equation

v(x) = x2 + 0.1
∫ 3

0
(x2 + t)v(t)dt.

Substitute your approximate solution into the right-hand side of the integral equa-
tion and simplify.

(b) Repeat part (a) using an eight-point Gauss-Legendre rule.
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