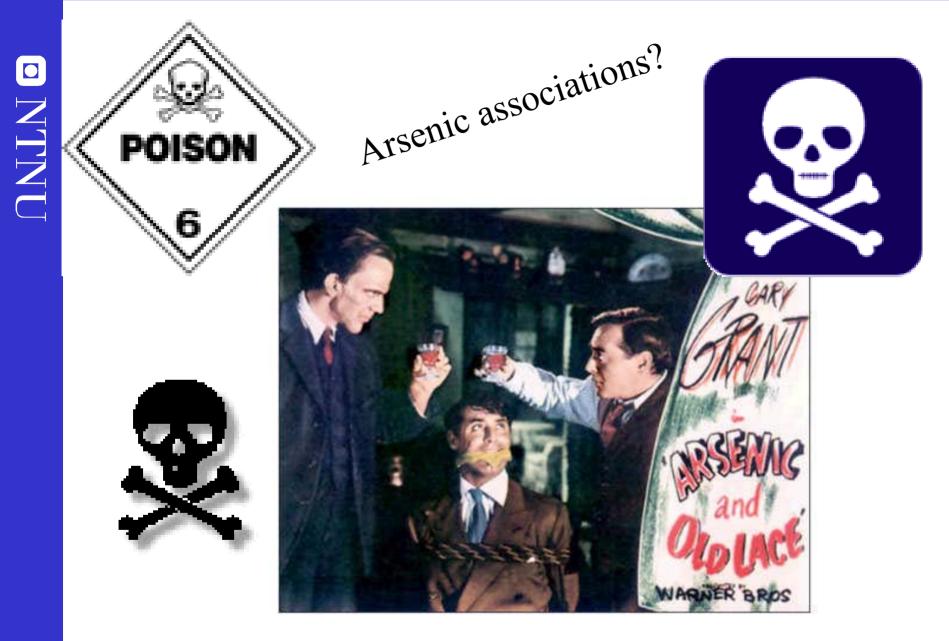


"water for life..."


The Removal of Arsenic from Drinking Water

presented by

Assoc.Prof. TorOve Leiknes

NTNU Norwegian University of Science and Technology

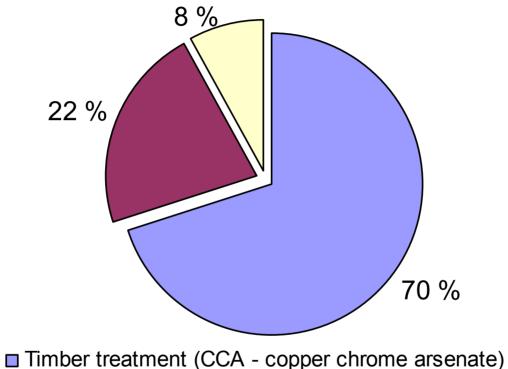
> Department of Hydraulic and Environmental Engineering

By Joseph Kesselring

Arsenic (As) – Fact Sheet:

Essentials:

- Arsenic (As)
- Atomic nr: 33
- Atomic weight 74.9
- Std state: solid at 298 K
- metalloid brittle, crystalline


- Common metal in earths crust avg.concentration 2 mg/kg
- > 200 mineral species, most common arsenopyrite (FeAsS)
- Found as inorganic As and in organic compounds. Some species have an affinity for clay mineral surfaces and organic mater
- As in drinking water first found in 1938 (Argentina)

<u>Toxicity</u> As(III) $\xrightarrow{60\times}$ As(V) inorganic As $\xrightarrow{100\times}$ organic compounds

Arsenic (As) – production and use

Sector	Use examples
Lumber	Wood and timber preservatives
	(copper chrome arsenate - CCA)
Agriculture	Pesticides, insecticides, herbicides, defoliants, debarking agents, soil sterilant
Livestock	Feed additives (weight gain, feed efficiency – swine/poultry), disease preventives, dips, algaecides
Medicine	Antisyphilitic drugs, treatment of trypanosomiasis, amebiasis, sleeping sickness
Industry	Glassware, electrophotography, catalysts, pyrotechnics, antifouling paints, dye and soaps, ceramics, pharmaceutical substances, alloys, battery plates, solar cells, optoelectronic devices, semiconductor application, light emitting diodes in digital watches, mining and smelting, fossil fuels

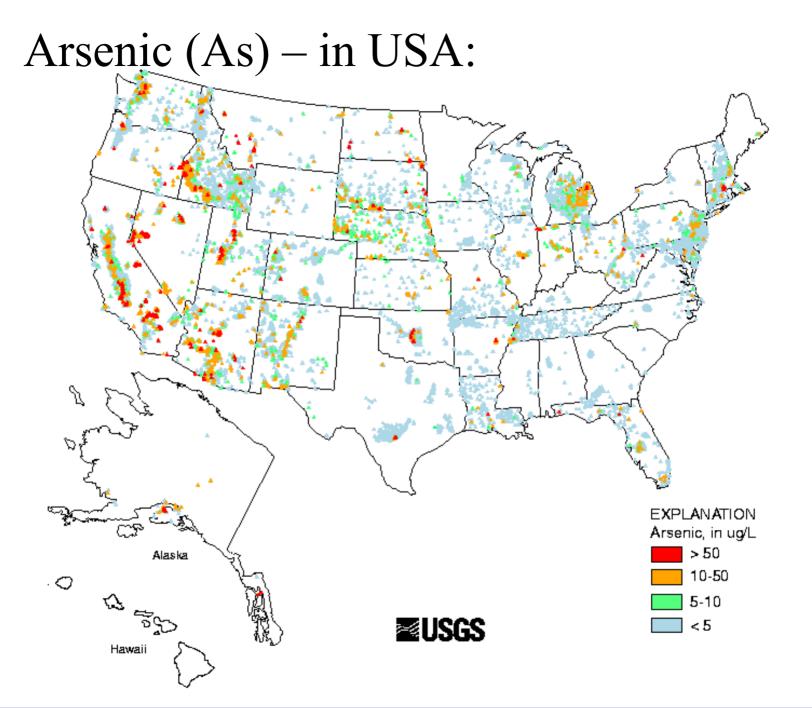
Arsenic (As) – production and use

Agricultural chemical (pestacide/herbacides, animal feed)
Others (pharmaceutical, glass, non-ferrous alloys)

Arsenic (As) – Environmental levels:

<u>Air:</u>

- rural areas $-0.02 4 \text{ ng/m}^3$
- urban areas $-3 200 \text{ ng/m}^3$
- industrial areas $> 1000 \text{ ng/m}^3$

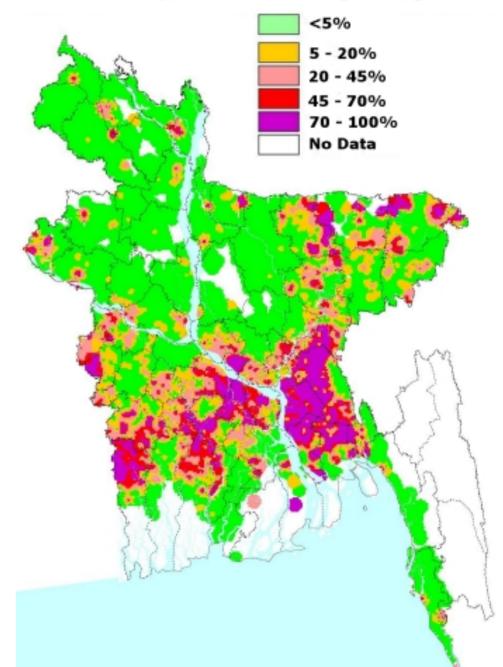

Open sea water:

• average concentration $-1 - 2 \mu g$ /liter

Arsenic (As) – Environmental levels:

Fresh water:

- generally below 10 µg/liter
- near anthropogenic sources 5 mg/liter
- ground water average $-1-2 \mu g/liter$
- geology dependent up to 3 mg/liter



Arsenic (As) – Bangladesh:

Geochemical map of Bangladesh:

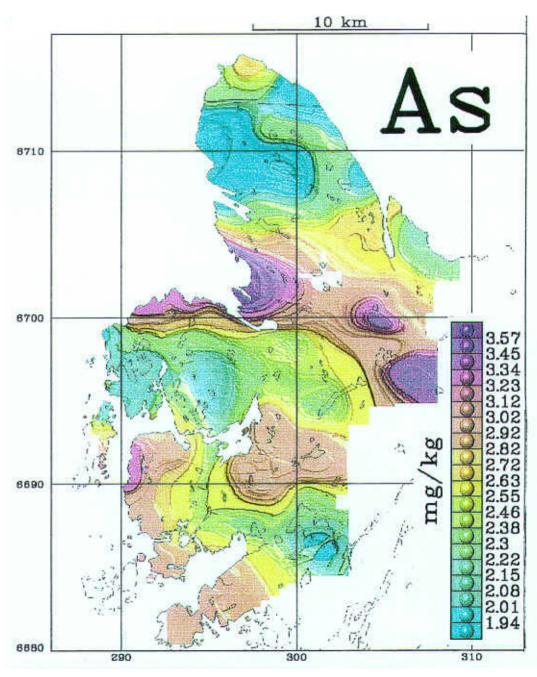
As first measured in groundwater in 1993

Probability of Arsenic Exceeding 0.05 mg/l

Arsenic (As) – Environmental levels:

Sediments:

• site specific 5 - 3000 mg/kg


Soil:

- background concentrations 1 40 mg/kg
- mean values 5 mg/kg

Arsenic (As) – case study:

Bergen, Norway

Survey of arsenic levels in the soil. (1998)

Arsenic (As) – Exposure:

- Primarily food and water non-occupational exposure
- Apart from obvious point sources of As contamination, high concentration is mainly found in groundwater
- Daily intake 20-300 µg/day (~25% inorganic As) (meat, poultry, dairy products, cereals)
- Pulmonary exposure burning of fossil fuels, tobacco smoke (smoker 10 µg/day vs. 1 µg/day for non-smokers)
- Average daily intake: *water = food*

Drinking water probably poses the greatest threat to human health

Arsenic (As) – drinking water Drinking water standards:

WHO

"International Standards for Drinking Water"

- 1958 published As 200 μ g/l
- 1963 revised As 50 μ g/l, (toxic substance)
- 1971 revised, status as toxic substance reaffirmed

"WHO Guidelines for Drinking Water Quality (GDW)"

- 1984 guidelines "significance to health" 50 µg/l
- 1993, 1996, 1997 2nd edition, As $10 \mu g/l$
- 1998 updated As 10 μ g/l, (1.7 μ g/l)

200

10

Arsenic (As) – drinking water National drinking water standards:

Standard variations – 50 μ g/l \rightarrow 10 μ g/l or stricter

Standard	Countries
< 10 µg/l	Australia (1996) – 7 μg/l
10 µg/1	USA (2001), European Union (1998), Japan (1993), Jordan (1991), Laos (1990), Mongolia (1998), Namibia, Syria (1994)
50 > std > 10	Canada (1999) – 25 µg/l
50 μg/l	Mexico (1994), Bahrain, Bangladesh, Bolivia (1997), China, Egypt (1995), India, Indonesia(1990), Oman, Philippines (1978), Saudi Arabia, Sri Lanka (1983), Viet Nam (1989), Zimbabwe

Arsenic (AS) – Health risks

<u>Arsenicosis</u> – chronic poisoning over 5-20 years

Long-term exposure: skin diseases \rightarrow cancer (liver, bladder, kidney)

Development of arsenicosis: <u>Stage 1</u>: Dermatitis, keratitis, conjunctivitis, bronchitis and gastroenteritis <u>Stage 2</u>: Peripheral neuropathy, hepatopathy, melanosis, depigmentation and hyperkeratosis <u>Stage 3</u>: Gangrene in the limbs, malignant neoplasm, and cancer

1:100 persons drinking > 50 μ g/l will die from arsenic related cancers

Water quality issues: (global perspective)

(WHO – assessment report 2000)

- 1. Diarrhea 4 billion cases/year, 2.2 million deaths
- 2. Intestinal worms effects ~ 10% of population in the developing world
- 3. Trachoma 6 million blind, 500 million at risk
- 4. Schistosomiasis 200 million affected, 20 million severely
- 5. Arsenicosis complete extent unknown, well documented in certain areas

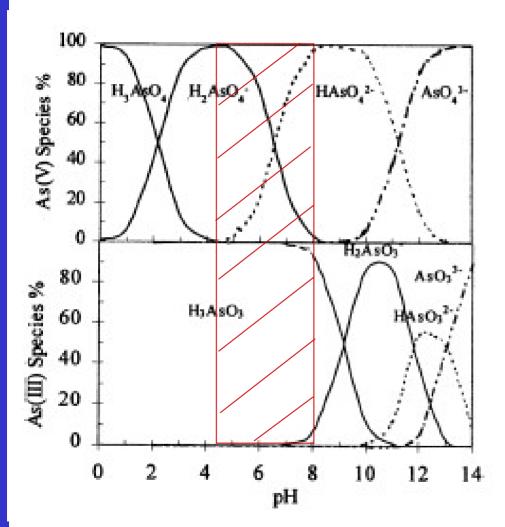
Press Release WHO/55 8 September 2000

RESEARCHERS WARN OF IMPENDING DISASTER FROM MASS ARSENIC POISONING

Example surveys:

- 1. USA 13 million > 10 μ g/l
- 2. Bangladesh 28-35 million > 50 μ g/l

46-57 million > 10 μ g/l


- 3. Inner Mongolia \sim 35% of pop. (96% of water undrinkable)
- 4. South Japan (Fukuoka Prefecture) $\sim 43\%$ well water > 10 μ g/l

Arsenic (AS) – Treatment:

Fundamental aspects of treating inorganic arsenic :

Arsenite	Arsenate
Oxidation state: +III	Oxidation state: +V
As(III) species: $-H_4AsO_3^+$ $-H_3AsO_3$ $-H_2AsO_3^-$ [pH > 9.2] $-HAsO_3^{2-}$ $-AsO_3^{3-}$	As(V) species: $-H_3AsO_4$ $-H_2AsO_4^-$ [pH 6-9] $-HAsO_4^{2-}$ [pH 6-9] $-AsO_4^{3-}$
Primarily soluble, no charge Anaerobic conditions	Primarily soluble, negative charge Aerobic conditions

Arsenic (As) – inorg. As species in water

[As] = [As(III)] + [As(V)] \bigcup Dominant species in water $[As(III)] \rightarrow [H_3AsO_3]$ $[As(V)] \rightarrow [H_2AsO_4^{-1}]$ $\rightarrow [HAsO_4^{-2}]$

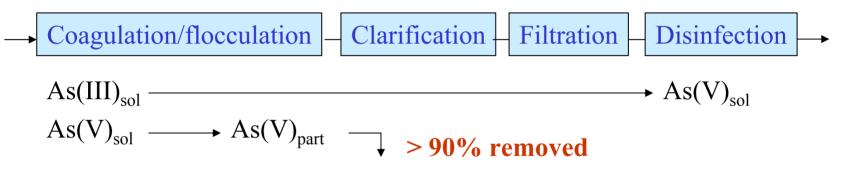
Arsenic (AS) – Treatment options:

Treatment technology for arsenic removal:

- precipitative processes:
 - coagulation/filtration
 - direct filtration
 - lime softening
- adsorption processes:
 - metal oxides / hydroxides
 - activated alumina
- ion exchange processes:
 - specifically anion exchange
- membrane processes:
 - MF, UF, NF, RO, EDR
- biological processes:

Arsenic (AS) – treatment studies:

Case New Zealand, Waikato River: ALUM based coagulation


- Geo-chemical source
- Thermal active area
- Surface water

Arsenic (AS) – Coagulation:

ALUM-based – case New Zealand, Waikato River:

Initial concentration ~ 30 μ g/l (90% as As(V))

Removal mechanisms

- 1. Precipitation formation of insoluble compounds $(Al(AsO_4), Fe(AsO_4))$
- 2. *Coprecipitation* incorporation into the MeOH phase
- *3. Adsorption* binding of soluble As(V) onto MeOH

Arsenic (As) – Coagulation

<u>Alternative coagulants;</u> Ferric chloride – FeCl₃

Mechanisms; • coprecipitation • adsorption

Process issues:

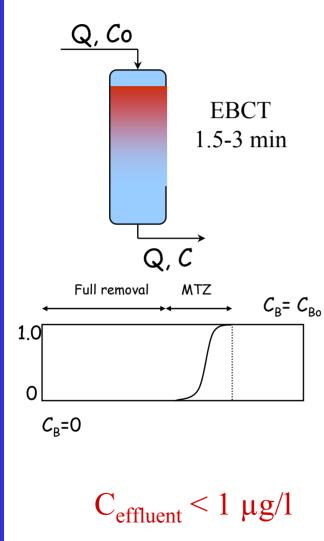
- coprecipitation through formation of inner sphere complexes
- adsorption onto metal oxides and hydroxides
- affected by other anions silicate, sulfate, carbonate, NOM

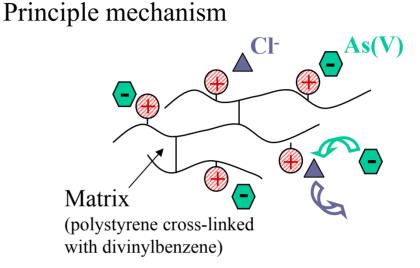

Ferric sulfate $-Fe_2(SO_4)_3 \longrightarrow$ Found to be less effective

Polymers and clays — Used to improve As removal

Arsenic (As) – Coagulation

Removal of particulates an important process step;

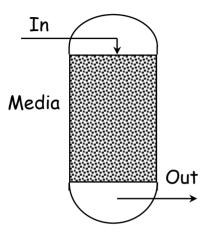

Conventional treatment processes


Laboratory / pilot studies: - 99% removal under optimal conditions

Full-scale plants: - report 50-90% removal

Arsenic (AS) – Ion exchange:

Assoc.Prof. TorOve Leiknes



 $R \cdot Cl^- + As(V)^- \rightleftharpoons R \cdot As(V)^- + Cl^-$

Process issues:

- Strong-base anion exchanger
- independent of pH and initial concentration
- easily regenerated (1.0 M NaCl)
- MeOH fouling/short circuiting
- competing ions have a strong effect
- $SO_4^{2-} \gg NO_3^{-} > Br^{-} > HAsO_4^{2-} > NO_2^{-} > Cl^{-} > H_2AsO_4^{-}$

Arsenic (As) –Adsorption processes:

<u>Activated Alumina (AA)</u> $- Al_2O_3$:

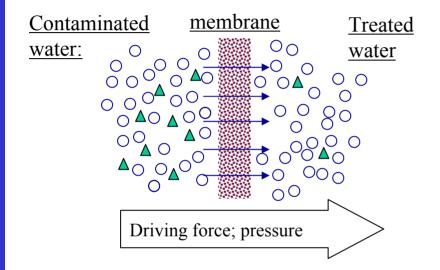
- dehydration of Al(OH)₃ at high temperature
- granulated form high surface area (200-300 m²/g)
- exhibits ion exchange properties
- efficiency typically > 95% removal
- narrow optimum pH range (5.5 6)
- controlled by pH, initial concentration and speciation

Operational considerations:

- acidic conditions preferable
- EBCT varying between 3-8 minutes
- regeneration with NaOH (not always effective, *i.e.* 50-70%)
- AA dissolves during regeneration, cementing tendencies
- residual metal, formation of colloids, resin fouling (iron precipitation)
- selectivity and competing ions

Arsenic (As) – Adsorption alternatives:

<u>Granular Ferric Hydroxide (GFH)</u> – Fe(OH)₃ and α -FeOOH:


- poorly crystallized α -FeOOH with water-filled pores
- granulated form (0.2-2.0 mm) high surface area (250-300 m^2/dm^3)
- 40000-60000 bed volumes, adsorption capacity 5-10 > AA
- efficiency typically > 95% removal
- operated like a conventional filter, disposed of when spent
- raw water quality and phosphates affect performance

Conventional Fe/Mn removal:

- most methods for Fe/Mn removal should work for As as well
- Green sand (mineral coated with MnO_2) strong oxidizing agent
- without Fe: ~ 40% removal, with Fe; ~ 80%

Ferric hydroxides appear to be most applicable

Arsenic (AS) – membrane methods: <u>Principle:</u>

Defined by 4 categories:

- 1. RO-reverse osmosis
- 2. NF nanofiltration
- 3. UF ultrafiltration
- 4. MF microfiltration

	Ionic Range	Molecular Range	Macro Molecu	ılar Range Micı	ro Particle Range	Macro Part	ticle Range
Micrometers (Log Scale)	0.001	0.01	0.1	1.0	10	100	1000
Angstrom Units (Log Scale)	10 2 3 5 8 1 1 1 1 1 1 1	100 * 100 * 100			10 ⁵ 3 5 8 2 1 1 1 1 1 1	10 ⁴ 3 5 8 2	10 ⁷ 3 5 8 2
Approx. Molecular Wt. (Saccharide Type-No Scale)	100 200	1000 10,000 20,000	100,000	500,000			
Process For	REVERSE OSMOSIS (Hyperfiltration)	ULTRAFILT	RATION		PART	ICLE FILTRATION	
Separation	NAN	OFILTRATION	MICR	OFILTRATION			

Arsenic (As) – membrane methods: <u>Process performance:</u>

matching membrane properties to source water characteristics

General observations:

- As(III) -9% (UF) to >90% (RO) rejection
- As(V) >98% (RO/NF) rejection
- negatively charged membranes enhance As(V) rejection
- oxidation/coagulation necessary for efficient removal with UF/MF
- DOC and more complex forms of arsenic relevant

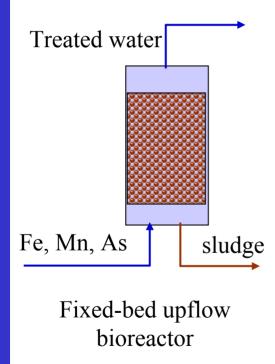
Arsenic (As) – Oxidation:

 $\begin{array}{c} As(V) \rightarrow readily removed \\ As(III) \rightarrow difficult \end{array} \rightarrow \begin{array}{c} As(III) \longrightarrow As(V) \\ \hline oxidation \end{array} \rightarrow \begin{array}{c} As(V) \\ \hline oxidation \end{array}$

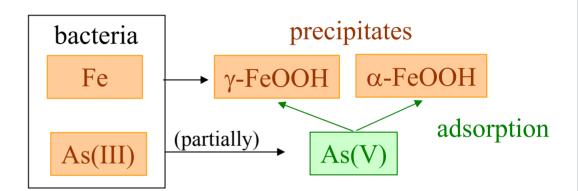
<u>Autoxidation (O₂):</u>

- kinetics slow (weeks) species relatively unchanged for days
- can be catalyzed by bacteria, strong acids/alkali solutions, copper

Chemical oxidation:


- chlorine, hypochlorite, ozone, permanganate, hydrogen peroxide, Fenton's reagent (H_2O_2/Fe^{2+}), UV-radiation
- Oxidation by products, undesired residuals

NB! Oxidation does not remove [As]


Arsenic (As) – biological processes:

Biological oxidation of Fe and Mn - an alternative for As(III) removal?

Process description:

Assoc.Prof. TorOve Leiknes

Process issues:

- [As] removal ~ 80%
- biological oxidation \rightarrow adsorption on MeOH
- no addition of chemicals necessary
- MeOH continuously produced during the process
- potential for simultaneous removal of Fe, Mn, As

Arsenic (As) – treatment summary:

Technology	Removal efficiency		- Comments	
Technology	As(III)	As(V)	Comments	
Coagulation				
1. ALUM	-	+++	pH dependent, water quality effects	
2. Iron salts	++	+++	(phosphates/silicates), generates As- rich sludge, centralized systems	
3. Lime softening	+	+++	rich sludge, centralized systems	
Ion exchange	-	+++	Choice of resin, competing ions, regeneration, waste disposal, cost	
Adsorption				
1. AA	+/++	+++	pH dependent, media life-time,	
2. GFH	++	+++	residuals, fouling, process	
3. Combined Fe/Mn	_/+	+++	optimization	
Membranes	_/+++	+++	Match membrane/water, costs, dissolved/particulate, operation	
Biological processes	++/+++	+++	Biological oxidation of As(III), methods still under development	

+++ - > 90% removal, ++ - 60-90% removal

+ - 30-60% removal, - - < 30% removal

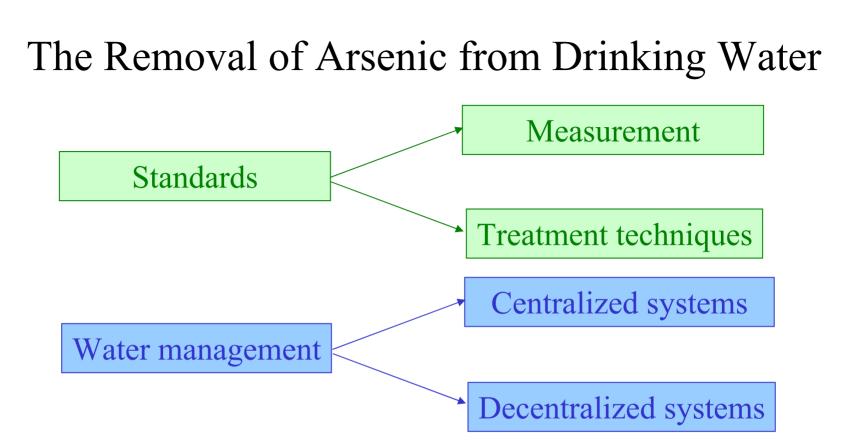
"Nurse, get on the internet, go to SURGERY.COM, scroll down and click on the 'Are you totally lost?' icon."

We have the technology, so what's the problem?

Arsenic (As) – solutions?

BAT - implement / optimize processes!

- better understanding of As removal processes
- improving known technology, finding novel approaches
- centralized / decentralized strategies
- new, simpler measuring techniques


Find another source!

• safe storage and treatment facilities

Drink bottled water! $\longrightarrow ~ 47.8 \pm 11.2 \ \mu g/l$ (April – August 2000)

Water policies and public awareness

- centralized treatment strategies
- Point-of-use (POU) and point-of-entry (POE)

Challenges:

- research to identify and improve technologies that effectively remove As
- implementation of stricter drinking water standards
- find sustainable solutions for decentralized systems
- public awareness and education on arsenic health impacts