

NTNU/XUAT Postgraduate course 21.05.02-31.05.02: Wastewater as a resource

INTRODUCTION TO INNOVATIVE PHYSICAL/CHEMICAL TREATMENT METHODS

Hallvard Ødegaard

PRE-TREATMENT BY GRIT AND FAT REMOVAL

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

PRETREATMENT BY SIEVING

Sieve opening: 0,5-1,5 mm

The primary treatment requirement: BOD > 20 % SS > 50 %

Sieve opening \leq 0,3 mm required

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

PRIMARY TREATMENT BY SETTLING

- Seldom used alone
 - too low efficiency
 - too big area reuired (typical design load: $v_f = Q_{dim}/A_{overflate} = 2 m/h$)
- New innovative primary treatment alternatives are asked for
 - Coarse media filtration

WASTEWATER PRECIPITATION

At the addition of a metal-salt two precipitations take place:

- Phosphate-precipitation $: AI^{3+} + PO_4^{3-} AIPO_4$
- Hydroxide-precipitation : $AI^{3+} + 3 OH^{-}$ $AI(OH)_{3}$ The precipitated floc consists of an aggregate of coagulated suspended solids/colloifs and $Me_m(OH)_n(PO_4)_n(H_2O)$

TYPICAL OPTIMAL pH-RANGES

Precipitant

Commercial name

Precipitation.pH

5,5-6,5

5,5-6,5

6,5-7,0

5,0-6,0

11,0-12,0

$Al_2(SO_4/Cl_3)_3$	AVR		
$Al_2(SO_4)_3$	ALG		
$AI_{m}(OH)_{n}^{(3m-n)+}$	PAX		
$Fe_2(Cl_3/SO_4)_3$	JKL		
$Ca(OH)_2$	Lime		

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

SOLUBILITY DIAGRAMS FOR PHOSPHATE AND HYDROXIDE

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

INFLUENCE OF pH ON PHOSPHATE PRECIPITATION

MIXING AND FLOCCULATION

In-line, plug flow mixing is best Paddle-type flocculation is normally used Residence time: 20-30 min, 2-4 chamers

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

THE PARAMETERS INFLUENCING FLOCCULATION

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering DIFFERENT DESIGNS OF SETTLING TANKS

Vertikalstrømningsbasseng

Slamteppebasseng

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

AVERAGE TREATMENT RESULTS IN NORWEGIAN PRIMARY PRECIPITATION PLANTS

Parameter	Average inlet conc. (mg/l)	Average outlet conc. (mg/l)	Average treatment eff. (%)
SS (mg/l)			
Small plants Large plants	226 <u>+</u> 150 233 <u>+</u> 171	22,3 <u>+</u> 16,6 17,3 <u>+</u> 10,0	90,1 92,5
BOD ₇ (mg/l)			
Large plants	187 <u>+</u> 143	25,4 <u>+</u> 11,7	86,4
COD (mg/l)			
Small plants Large plants	494 <u>+</u> 90 505 <u>+</u> 243	121 <u>+</u> 72 108 <u>+</u> 40	75,5 78,6
Tot P (mg/l)			
Small plants Large plants	5,33 <u>+</u> 2,26 5,40 <u>+</u> 3,01	0,50 <u>+</u> 0,46 0,28 <u>+</u> 0,14	90,6 94,8

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

DISTRIBUTION OF COD-REDUCTION IN 87 PLANTS

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Anleggsstørr.	N ¹⁾	COD)
i tusen pe		Effl.(mg/l)	%
. 2	22	114 + 37	74.6
2 - 10	45	106 ± 40	75.6
10 – 50	15	101 ± 36	75.6
	-	70 1 10	74 1

EXPERIENCES FROM ALL SMALL PLANTS

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

EXPERIENCES SMALL CHEMICAL PLANTS

EXPERIENCES SMALL BIOLOGICAL PLANTS

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

EXPERIENCES BIOLOGICAL/CHEMICAL PLANTS

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Frequency plots for effluent concentration in small wastewater treatment plants in Norway operating after various treatment methods

Reference:

Ødegaard, H. og Skrøvseth, A.F.: "An evaluation of performance and process stability of different processes for small wastewater treatment plants". Wat. Sci. Tech. Vol. 35, No 6, 1997, 119-127.