FRENCH-NORWEGIAN WORKSHOP ON THE MANAGEMENT OF WATER QUALITY November 2001

The potential of membrane bioreactors for special wastewater problems

Assoc. Prof. Tor Ove Leiknes

Terms and definitions

- Biological reactor.
 - Suspended (AS)
 - Fixed, Biofilm

- Mode of operation
 - · Cross flow, dead-end
- Configuration
 - Flat sheet, spiral wound, tubular, hollow fiber
- Material
 - Hydrophobic/hydrophilic, porous/dense, asymmetric etc.

"standard" configurations

MBB-M-R studies:

Moving-bed-biofilm-membrane-reactor

Pilot plant components

Primary settling tank:

- wastewater from a municipal sewer pipe
- volume ~ 9 m³
- mechanical separation no chemicals added

MBBR:

- KMT biofilm reactor Load: 120±20 mgCOD/l

- volume: ~ 200 I ~ 40% SCOD

- flow: ~ 2 l/min HRT ~ 100 min

Membrane filtration unit:

- model: ZW-10, Submersible module

- configuration: Outside/ in hollow fiber

- nominal surface area: 0,93 m²

process tank working volume: 190 l

- flow extracted from MBBR: ~ 1 l/min

Photo of pilot plant components

MBBR unit

Permeate tank

Membrane process _ tank with submerged module

Pumps, blower, control unit

Water qualities

55	COD	SCOD	NH ₄ -N	DO	рН	T°C
79±45	204±100	56±11	21±5	2.0	7.4±0.2	14

- No nitrification/denitrification: average NH₄-N: 20 mg/l throughout system.
- No detectable biological activity in the process tank

Performance

55 mg/l	99,5%		
	(<5 mg/l)		
Turbidity	99,5%		
NTU	(<1)		
COD mg/l	84,0%		

Operating conditions:

- Flux: 60 LMH, >150 hrs
- HRT: 20-60 minutes
- Volumetric loading rate:
 30-45 kg COD/m³.d

Why MBB-M-R?

Biofilms:

- biofilm fairly "constant"
- production = loss at steady state
- mass transport limiting step
- · surface area / volume essential
- biomass is more "specialized"

Membrane technology:

- · Efficient removal of COD
- · 85-90 % TCOD removal
- No particulates
- · No chemicals

Treatment demands:

- high quality effluent (secondary/tertiary treatment)
- Water reuse / recycling
- compact process design
- good control of operating criteria

Dr. TorOve Leiknes

"Conclusion"

Concept:

Hybrid solution:

- Optimizing the biofilm process for special wastewater sources
- · Efficient particle separation

- "on-site" treatment, targeting specific discharges
- treatment of recalcitrant substances
- · high quality effluent, water recycling/reuse potential
- compact process design
- · energy efficient and "sustainable" solutions

