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2 THEORY OF TRANSPORT IN MEMBRANES 
 

2.1 Driving forces for transport mechanisms 
 
A membrane process is a separation process that covers a broad range of problems from 
particles to molecules and a wide variety of membranes are available to design a process. 
Although the membranes may vary in material (organic vs. inorganic) and structure (porous 
vs. nonporous) the basic principle of membrane separation is the same. The separation 
process and mass transport through the membranes is a function of the membrane being used 
and the constituents being separated, and subsequently the theory used to describe the process 
and mechanisms. However, common for all systems is the principle illustrated in  
where a membrane is considered a permselective barrier, or interface between two phases, and 
the separation process takes place due to a specific driving force transporting a compound 
through the membrane from the one phase to the other. 

Figure 1

Figure 1.  Schematic of membrane separation process with different driving forces that 
are present 
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The membrane separation process is defined by which compound is more readily transported 
(selectivity) through the membrane and by the flow of the specific compound (flux). Though 
this may occur by various mechanisms the performance and efficiency of the process is 
described by these parameters. The selectivity of a membrane is generally expressed as a 
retention factor (R) or by a separation factor (α). The definition of the retention factor is given 
by equation (0); 
 

R 1feed permeate permeate

feed feed

C C C
C C
−

= = −   (0) 

 
 where:   C   is the solute concentration in each phase noted. 
 
Retention is often used for dilute aqueous solutions where the solvent is the water. As the 
retention is a dimensionless unit it expresses a percent that varies between 100% and 0%, 
where R=100% means a complete retention of the solute while R= 0% means both the solute 
and the solvent pass equally through the membrane. The separation efficiency of gas mixtures 
and organic mixtures is generally expressed by the separation factor. For a binary mixture of 
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compounds A and B, the separation factor is expressed by the respective concentrations in the 
feed (xA, xB) and permeate (yA, yB) as expressed by equation (2); 
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The selectivity is chosen such that its value is greater than unity and it is expressed by which 
component passes through the membrane, i.e. for αA/B the permeation rate of compound A is 
greater than compound B. If αA/B = αB/A = 1, no separation is achieved. 
 
Given a membrane selectivity, the flow through a membrane, or flux, is defined by the driving 
force that governs the transport mechanism. When a membrane is the permselective barrier 
between two phases the transport of a molecule or particle across from one phase to the other 
will depend on a force that acts on the molecule or particle. The amount of force acting on the 
constituents will depend on the gradient in potential, or the difference in potential, across the 
membrane. The chemical potential difference (∆µ) and the electrical potential difference are 
the main potential differences in membrane processes. [Mulder, 1997] The driving force is 
generally determined by the difference in chemical potential and is a result of either pressure 
differences across the membrane, concentration gradients between the two phases or from 
temperature differences. The electro potential difference is mainly important in electrodialysis 
and similar processes.   
 
The definition of the chemical potential relates back to the thermodynamic principles that 
stem from Gibbs free energy equations. [Mulder, 1997; Baker et.al., 1995; Sirkar/Ho (eds) 
et.al., 1992] For isothermal conditions the chemical potential is determined by pressure and 
concentration, and the chemical potential is expressed as in equation (3) 
 

lnµ µ= + +o
i i i iRT a V P  (3) 

 
Where µi

o is a constant expressing the chemical potential of the pure compound while is the 
concentration of the compound in terms of activity, 

ia
γ=i ia ix and determined by the activity 

coefficient and mole fraction. Vi is the volume of compound i and P the pressure, R is the 
universal gas constant and T temperature. The difference in chemical potential is therefore 
determined by a concentration term and pressure. This potential difference can be expressed 
as a differential as in equation (4); 
 

ln   or  lnµ µ∆ = ∆ + ∆ = +i i i i i iRT a V P d RTd a V dP  (4) 
 
The chemical potential across a membrane is defined as the chemical potential on the 
permeate side minus the chemical potential on the feed side. From thermodynamics, diffusion 
(i.e. mass transport of a compound) is defined as spontaneous only if the change in chemical 
potential of the diffusing species is negative. A driving force from the feed side of a 
membrane to the permeate side can therefore be generated by decreasing the pressure on the 
permeate side or pressurizing the feed side.  
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Although thermodynamics is fundamental in understanding and describing a membrane 
process it is not sufficient for describing the transport phenomena. Various transport models 
have been developed based on the principles of thermodynamics and the structure and 
characteristics of the membrane. The simplest classification of membranes by structures is 
either as porous or as nonporous and the following presentation of models is based on this 
distinction. Some models, however, may be applied for both types of membranes. 
 
 
 
 

2.2 Membrane transport models 
 

2.2.1 Transport through porous membranes 
 
An overview of various membrane manufacturing methods and membrane materials is 
presented in section Error! Reference source not found.. From the combination of 
manufacturing method with the choice of membrane material it is apparent that the definition 
of a porous membrane is somewhat arbitrary. Pore sizes vary from 2 nm to greater than 10 µm 
and the shape and structure of the pore is quite different for the various membrane types. 
Although transport models have been developed for porous membranes one needs to be aware 
of the variety of existing pore geometries and membrane characteristics that influence the 
transport mechanisms. These characteristics have to a certain degree been incorporated into 
the respective models. With porous membranes, all transport from the feed to the permeate 
side is essentially through the pores rather than the dense matrix of the membrane. 
Subsequently, various membrane characteristics related to structure such as pore size, pore 
distribution, porosity, pore structure and the geometry of the pore need to be taken into 
consideration in developing a transport model.  
 

Symmetrical cylinders Packed bed of spheres Asymmetric / sponge likeSymmetrical cylinders Packed bed of spheres Asymmetric / sponge like

 
 

Figure 2.  Schematic of basic pore geometries found in porous membranes 

 
 
 
A schematic of basic pore geometries is shown in Figure 2. Two basic geometries are shown 
that possibly represent the two extremes, though in reality pore geometries are not as clearly 
defined and have many variations in between these structures. The simplest geometry is a 
series of regular cylindrical pores that are perpendicular to the membrane surface. In an 
idealized membrane of cylindrical pores with the same radius, the volume flux through the 
membrane may be described with the Hagen-Poiseuille equation. 
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 where: ε  is the surface porosity 
  τ  is the tortuosity 
  µ  is the viscosity 
  rp  is the pore radius 
  ∆P  is the pressure difference across the membrane 
  ∆x  is the membrane thickness (pore length) 
 
For cylindrical pores the tortuosity is equal to unity. As the shape of the pore changes 
determining the tortuosity factor of a membrane is difficult.  From equation (5) it is apparent 
that the morphology and characteristics of a membrane structure are important and influence 
the transport across the membrane. The equation gives a good description of well-defined 
parallel pores, however, such structures are not common in reality and the challenge is 
defining the parameters describing the membrane characteristics. 
 
The opposite of this symmetrical shape is the porous structure that is formed when spherical 
shapes are packed in a bed to form a porous media. This structure is typically found in 
sintered and some phase inversion membranes. Several researchers have investigated flow 
through a porous media, particularly flow in sand-beds for filtration and groundwater flow. 
An expression for flow through a porous media of packed spheres has been developed by 
Carmen-Kozeny and is shown in equation (6);    
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 where; ε  the volume fraction of the pores (bed porosity) 
  K  is the Carmen-Kozeny constant 
  S  the internal surface area  
  µ  is the fluid viscosity 
  ∆P  is the pressure difference across the membrane 
  ∆x  is the membrane thickness (porous media thickness) 
 
 
In most practical cases equation (6) is not easy to use either as the equation parameters are 
very much dependent on the geometry of the pores. This is a function of the media grain size, 
shape of the grains (sphericity), packing density etc. that define the membrane characteristics 
and subsequently it is difficult to evaluate these equation parameters.  
 
Further investigation of the flow through pores show that the transport of molecules through 
porous membranes can be described by the mechanisms of convective flow, Knudsen 
diffusion and pore surface diffusion. When the pores are much larger than the molecule, 
transport will be by convective flow. However, if the pore size is smaller than the mean free 
path the convective flow is replaced by Knudsen diffusion. The mean free path (λ) is defined 
as the average distance traversed by a molecule between collisions. Knudsen diffusion is 
primarily a phenomenon that occurs in gas transport in porous media. In liquids molecules are 
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very close to each other and the free mean path is in order of a few Ångstroms. [Mulder, 
1997] Knudsen diffusion can therefore be neglected in liquids for the finest porous 
membranes and will only be important for gases under certain conditions. These mechanisms 
are not included in the two transport models described above. As it primarily applies to gases, 
the principles of gas transport in porous membranes are illustrated in . In convective 
flow (also called Poiseuille flow) all the gases flow through the membrane and no separation 
occurs. When the pores are very small and the mean free path of the gases is larger than the 
pore diameter, collisions with the pore wall occur. Under such circumstances the lighter 
molecules will then preferentially pass through the membrane. When the pore is sufficiently 
small, molecular sieving takes place excluding molecules that are larger than the pore size. 

Figure 3

Figure 3.  Mechanisms for gas flow though a microporous membrane as a function of 
pore size 
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When considering gas or vapor separation with porous membranes it is therefore important to 
determine which transport mechanism shown in  is dominant or controlling the mass 
transport. The mean free path of gas molecules is a function of pressure and temperature and 
is given by; 
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λ
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⋅

=
⋅ ⋅ ⋅
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 (7) 

 
 where; T  is the temperature 
  P  is the pressure within the membrane pore 
  d  is the diameter of the gas molecule  
  k  is the Planck constant 
 
Under atmospheric conditions and for pore diameters around 0.01 µm Knudsen flow was 
found to be dominant in gas flow through microporous membranes. [Callahan, 1988]   
 
Considering the Hagen-Poiseuille and Carmen-Kozeny models presented above, the equation 
parameters immediately before the ∆P/∆x term can be viewed as expressions for the hydraulic 
permeability expressed in terms of the membrane characteristics. The transport models for 
porous membranes can thus be modified to account for specific membrane structures or 
mechanisms such as Knudsen flow. When Knudsen flow is dominant, a transport model 
defining the flux as in equation (8) may be used. [Mulder, 1997]  
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 where; rp  is the pore radius  
  n is the number of moles 
  DK  is the Knudsen diffusion coefficient 
  R  is the universal gas constant 
  T  is the temperature 
  τ  is the tortuosity  
  ∆P  is the pressure difference across the membrane 
  ∆x  is the membrane thickness (pore length) 
 
 

2.2.2 Transport through nonporous membranes 
 
Nonporous membranes are primarily made from organic polymers and the presentation in this 
section will therefore only refer to synthetic organic membranes. Nonporous membranes are 
defined as such that the membrane has a homogenous structure without any defined pores. 
However, on a molecular level the polymer matrix and structure of the molecular chains does 
result in a morphology that can be defined as “molecular pores”. This distinction will be 
referred to when discussing transport through different types of nonporous membranes. In 
simple terms, transport through nonporous membranes can be described as a solution-
diffusion mechanism. Nonporous membranes are sometimes referred to as solution-diffusion 
membranes because the transport occurs when molecules dissolve into the membrane and 
diffuse across it. In principle the mechanism is the same whether the separation process is for 
liquids or gases. However, the solubility of liquids and gases into the membrane polymer is 
quite different, with liquids in general showing a higher affinity for polymers than gases, and 
the actual transport of a liquid or gas through the membrane is therefore different.  
 
The transport of a gas, vapor or liquid through a membrane can be described by the 
permeability of a membrane, which is a function of the solubility and diffusivity of the 
compound in the membrane material. Permeability can be expressed as;   
 

Permeability (P) = Solubility (S) x Diffusivity (D) (9) 
 
The solubility is a thermodynamic parameter and will depend on whether it is a gas or liquid 
that is dissolving into the membrane. In general, the solubility of gases in a polymer is low 
and can be described by Henry’s Law but does not apply to liquids. The diffusivity term on 
the other hand is a kinetic parameter that defines how fast a dissolved component is 
transported through the membrane. The diffusivity is dependent on the molecule being 
transported and the geometry of the polymer membrane. Different transport models have been 
developed for nonporous membranes and the solution-diffusion model and the free-volume 
diffusion model are probably the most widely accepted. [Baker et.al., 1995] 
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2.2.3 Solution-diffusion model. 
 
The underlying assumptions of mass transport in a solution diffusion processes are the 
following three steps: [Nijhuis, 1990; Wijmans et.al., 1995] 

1. Selective uptake (sorption) of one of the components on the feed side of the 
membrane, 

2. Selective transport (diffusion) through the membrane, 
3. Desorption (evaporation) on the permeate side of the membrane in the vapor phase. 

 
In the solution-diffusion model the starting point to describe the kinetics of the diffusion 
process is based on thermodynamics where the driving force is related to the potential 
difference. The flux of a component can then be described by the following equation;  
 

µ
= − i

i
dJ L
dx

 (10) 

 
 

)o

where; the differential is the chemical potential gradient of compound i  
  Li is a proportionality coefficient  
 
In equation (10) the proportionality coefficient links the chemical potential to the flux. The 
chemical potential driving force in this expression can be any of the forces (concentrations, 
pressure, temperature, electrical), however, for most applications this can be restricted to 
concentration and pressure as expressed by equation (4). For incompressible phases (liquids) 
the volume doesn’t change with pressure and integrating equation (4) gives; 
 

(lnµ µ= + + −o
i i i i iRT a V P P  (11) 

 
For compressible phases (gas), the molar volume changes as a function of pressure. The ideal 
gas laws need to be applied when integrating equation (4) and gives; 
 

ln lnµ µ= + +o
i i i i o

i

PRT a V
P

 (12) 

 
therefore described by Fick's first law. 
 

= −
dCJ D
dx

 (13) 

  
 where:  J  is the flux 
  D  is the diffusivity 
  C  is the concentration gradient over distance  x. 
 
Integrating this expression over the membrane thickness (l) we get the following expression, 
where Cf and Cp are the component concentrations at the membrane interface; [Boddeker, 
1995] 
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A variation of the solution-diffusion model is a modification that takes into account 
imperfections in a nonporous membrane. During manufacture fine pores may form though 
which mass transport may occur. The solution-diffusion-imperfection model includes a flow 
through these pores as well as the diffusion term. [Sherwood et.al., 1967] The model has been 
used to describe the mass transport in reverse osmosis membranes, however, it has not been 
found suitable for design estimations of applications. [Soltanieh et.al., 1981] 
 
 

2.2.4 Free volume diffusion model.  
 
This model was first proposed in the early 1960’s and has since been developed by several 
studies. [Sirkar/Ho (eds) et.al., 1992] Several investigators have attempted to develop a 
simple and useful version of the theory, however, providing a precise definition for the free-
volume parameters has been difficult. The theory states that the movement of molecules 
within a matrix depends on the free volume available as well as the energy to overcome the 
polymer-polymer interactions. The definition of free volume is therefore dependent on 
whether a polymer is in the glassy or rubbery state. The state of a polymer is important in 
defining the free volume in this theory. 
 
The state is defined as the phase in which the polymer appears. The phase of a polymer can be 
distinguished with two regions defined as rubbery or glassy polymers. For non-crystalline or 
amorphous polymers there is a transition temperature where the polymer changes from a 
glassy to a rubbery state. These states are determined by structural factors relating to polymer 
chain flexibility, chain interaction and molecular weight. A rubbery polymer is an amorphous 
polymeric material that is above its softening or glass transition temperature while a glassy 
polymer is below this temperature. [Billmeyer, 1971]  
 
 
 

2.2.5 Resistance-in-series model 
 
The transport models presented in sections 2.2.1 - 2.2.4 have been discussed based on the 
definition of porous and nonporous membranes. These transport models can be described as 
using a phenomenological approach or a mechanistic approach to describe a membrane 
separation process. The first group does not give any information on how the actual 
separation occurs while the second tries to relate the process to specific structure related 
parameters of the membrane. As discussed in previous sections, membranes are manufactured 
for specific applications and have a large variety in structure and composition such that a 
simple definition porous / nonporous is not always valid. In many cases, membranes will have 
characteristics and properties that can be related to both a porous and nonporous definition. 
Ultimately the need for a more general transport model is apparent which can be used for 
various applications. 
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A resistance-in-series model has been proposed that defines how the mass transfer of a 
component (liquid/liquid or liquid/gas) from one phase to another encounters a resistance. 
[Keller et.al., 1967] With the development of composite membranes for gas separation 
processes a resistance model was also defined for these types of membranes. [Henis et.al., 
1981] By analogy to electrical circuits, transport across a membrane from one phase to the 
other needs to overcome a set of stages or resistances. The effective resistance to mass 
transport is then the sum of all the resistances.  A key to the resistance-in-series model is 
therefore the identification of the various resistances to mass transport and the definition of 
each resistance. 
 
 

Phase 1 Phase 2Membrane

Driving force

R1 R2RM
R1 – resistance in phase 1

RM  – resistance in membrane

R2 – resistance in phase 2

Phase 1 Phase 2Membrane
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Figure 4.  Schematic showing principle of resistance-in-series theory 

 
 
The principle for a resistance in series model is illustrated in Figure 4 where the overall 
resistance to transport is the sum of a series of resistances in each phase. The resistance in 
phase 1, which is normally the feed, can be caused by the formation of a cake layer on the 
surface of the membrane or by liquid-film boundary layer effects such as concentration 
polarization or gel formation. The membrane resistance will inevitably be a function of the 
membrane structure (porous vs. nonporous) and various fouling phenomena. In phase 2, the 
resistance will relate to how efficient the permeating component is removed from the 
membrane. The overall resistance to mass transport in a membrane process will therefore be a 
function of the separation application (liquid vs. gas) and the specific properties of the 
membrane used in the process. For all cases, the reciprocal of the overall resistance will be 
equal to the sum of the reciprocal resistances defined for a system as expressed by equation 
(15); 
   

1 2

1 1 1
= + +

overall M

1
R R R R

 (15) 

 
 where: R1  is the resistance in phase 1 (f.ex. liquid phase) 
  RM  is the resistance in membrane (liquid or gas) 
  R2  is the resistance in the phase 2 (f.ex. gas phase) 
 
The resistance-in-series model can be applied to both porous and nonporous membranes. The 
definition of the membrane resistance will depend on the membrane properties and needs to 
be defined for each application. For a nonporous membrane, the membrane resistance can be 
expressed by the permeability and the fiber thickness. In porous membranes, the pore size and 
geometry will determine if the transport is by convective flow, Knudsen diffusion or 
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molecular diffusion. In composite membranes, consisting of both a porous support layer and a 
dense membrane a combination of the above is required.   
 
With the development of composite membranes and gas separation processes variations of the 
resistance in series model have been reported. The primary distinction between these 
applications of the model is related to the definition of the resistances and incorporating them 
in the overall resistance term. [Kimmerie, 1991; Ashworth, 1992; He et.al., 1996] When the 
resistance to mass transfer is due to concentration polarization the resistance-in-series model 
is some times referred to as the stagnant film model. This is particularly the case for pressure-
driven processes where the convective flow transports solute or particles to the membrane 
surface where they are retained and accumulate. [Zidney, 1992; Zidney, 1997] A similar 
approach is also applied between a liquid phase and gas phase when a porous membrane is 
used to create a phase interface, where the model is often referred to as the two-film model 
from the theory of gas transfer developed by Whitman and Lewis, 1924. An extension of the 
model is also been proposed where the model is modified to incorporate the additional 
resistance due to the membrane and characteristics of the transport phenomena. [Datta et.al., 
1992] 
 
The resistance-in-series model is commonly used to define membrane contactors. [Sirkar/Ho 
(eds) et.al., 1992; Noble/Stern (eds)  et.al., 1995; Gabelman et.al., 1999] In vacuum 
degassing, the resistance-in-series model is therefore the most appropriate model to be applied 
as various membrane types can be accounted for and the resistances to mass transfer can be 
defined for each phase as a function of the system. In the following section, a resistance-in-
series model will be used to describe the three basic membrane separation designs, 
hydrophobic/hydrophilic microporous membranes and composite/dense nonporous 
membranes. 
 

2.3 Transport model applied to gas transfer  
 
The resistance-in-series model has been chosen to describe the mass transport in a degassing 
application using a membrane contactor. When a vacuum is applied to one side of a gas 
permeable membrane that is immersed in water, a concentration gradient is created across the 
membrane. Dissolved gases in the water diffuse in the direction of decreasing concentration, 
through the membrane and into the vacuum. With hydrophilic microporous membranes the 
pores are wetted by the water and are filled by the solute. In the case of hydrophobic 
microporous membranes the pores are generally gas-filled and provide the interface between 
the vacuum and liquid phase. For hydrophobic membranes the pores will remain dry and gas-
filled as long as the penetration pressure is not exceeded. The critical pressure at which 
wetting of the pores occurs is referred to as the breakthrough pressure. [Kiani et.al., 1984; 
Kim et.al., 1987; Nirmalakhandan et.al., 1987; Gabelman et.al., 1999] The breakthrough 
pressure for a liquid/liquid phase or gas/liquid phase has been reported as in equation (16).  
 

2 cos 2 cos   (liquid/liquid),     (gas/liquid)
p p

P P
r r

γ θ σ θ
∆ = ∆ =  (16) 

 
Here γ is the interfacial tension and σ the surface tension, while θ is the contact angle and rp is 
the pore radius. Relating to a gas/liquid phase, this pressure is therefore a function of the 
surface tension, the contact angle and the pore diameter. The contact angle is defined as the 
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angle measured in the wetting fluid that forms between the wetting fluid and membrane pore. 
[Osipow, 1962] The relative breakthrough pressure for various membrane configurations and 
gas/liquid interactions have been reported in Noble/Stern (eds) et.al., 1995. The significance 
of the breakthrough pressure is apparent in a vacuum degassing system. In vacuum degassing 
it is important that the aqueous phase is not pulled through the membrane pores and into the 
gas phase as this is contradictory to the objective. The pores will remain dry and gas-filled in 
a water/vacuum application in hydrophobic membranes if the pores are very small, < 0.1 µm. 
In this study, hydrophobic membranes were therefore used and analysis of the resistance-in-
series model that applies is therefore based on situation A in Figure 5. 
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Figure 5.  Partial pressure and concentration profiles for a gas/liquid phase with: A. gas-

filled pores, and B. liquid-filled pores 

 
A membrane contactor as shown in Figure 5 is essentially used as a phase barrier between the 
gas and liquid phases, where a hydrophobic membrane prevents the liquid phase from 
entering the pores. Under a vacuum the pores remain dry and gas filled while under pressure 
the barrier may prevent bubbles from entering the liquid. As long as the liquid pressure is 
equal to or higher than the gas pressure bubbles will not form. In effect, the membrane serves 
to create a phase interface between the gas/liquid interface and an equilibrium separation 
process of either gas absorption or gas stripping will take place depending on the direction of 
the driving force. 
 
The kinetics of gas transfer modeled using the resistance-in-series model, is therefore like the 
two-film theory for mass transport across and gas/liquid interface with the addition of a 
membrane resistance. [Letterman (ed), 1999] The mass transfer of gases across a membrane is 
therefore determined by three resistances in series as shown in Figure 6.  These consist of a 
resistance across the liquid-film layer created by the aqueous solution around the fibers, the 
resistance of the membrane, and finally the gas-film layer created by the gases within the 
fiber. The sum of these resistances defines the overall resistance to gas transfer with a 
microporous membrane system. The reciprocal of the overall resistance is the overall mass 
transfer coefficient of the system.  
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Figure 6.  Mass transfer resistance in the respective phases of a microporous 

hydrophobic membrane. 

Figure 6
 
Analysis of a hydrophobic porous membrane is illustrated in  where the dissolved 
gases being removed encounter a resistance in the liquid boundary layer, the gas-filled pores 
of the membrane and the gas phase boundary layer. A gas-liquid interface is formed between 
the aqueous phase and gas phase at the pore openings. The concentration profile of any gas 
across the membrane and is discontinuous at the liquid-gas interface, and can be expressed by 
the equilibrium condition defined by Henry’s law. The equilibrium relationship over the 
interface is expressed by equation (17); 
 

water gasiC H C= ⋅ i  (17) 
 
 where: C   is the interface concentration in the water and gas phase 
  H   is partition coefficient expressed by Henry’s law constant 
 
In vacuum degassing, the driving force for mass transfer is from the liquid phase to the gas 
phase. The over all mass transfer coefficient and individual mass transfer coefficients for a 
hydrophobic membrane, based on the aqueous phase concentration are then expressed as; 
[Sirkar/Ho (eds) et.al., 1992] 
 

1 1 1 1

L MK k H k H k
= + +

⋅ ⋅ G

 (18) 

  
 where: K   is the overall mass transfer coefficient 
  kL   is the liquid-film mass transfer coefficient 
  kM  is the membrane mass transfer coefficient 
  kG  is the gas-film mass transfer coefficient 
  H   is Henry’s law constant 
 
The terms on the right hand side of equation (18) represent the resistance to mass transfer in 
the two boundary layers and the membrane. Development of this equation also assumes the 
following; a steady state system, equilibrium exists at the interface, the pores are uniform 
through out the membrane, no transport occurs through the nonporous parts of the membrane, 
and mass transfer can be described by simple film-type mass transfer coefficients.  
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The mass transport across the membrane can be described by the flux. The flux can be defined 
for each layer taking into account the individual mass transfer coefficients. In principle, the 
flux through each defined layer must be the same and the respective fluxes are equal. In this 
way the interface concentrations can be eliminated and the flux may be expressed in terms of 
the overall mass transfer coefficient and the concentration gradient between the bulk 
concentrations in the liquid phase and the gas phase. For a steady state condition the flux of 
gases across the membrane during vacuum degassing may be calculated using the formula:  

 
 =N K(C - C*)  (19) 

 
 where: K   is the over all mass transfer coefficient 
  C   is the liquid phase bulk concentration 
  C*  is the gas phase concentration 
 
 
The over all mass transfer efficient, K, is determined by the type of membrane used, and the 
appropriate expression representing the respective mass transfer resistances that dominate the 
overall resistance to mass transfer. From an evaluation of equation (18) one can see that 
resistance to mass transfer may be controlled by one or several stages, depending on the value 
of the respective mass transfer coefficients and the partition coefficient. For example, if the 
mass transfer coefficients in each phase (liquid-membrane-gas) are in the same order of 
magnitude, the value of the partition coefficient will be important. In gas transfer, the value of 
Henry’s law constant will determine the significance of the membrane resistance and gas-film 
boundary layer. For soluble or sparingly soluble gases the value of Henry’s law constant is 
high, and thus the second and third term in equation (18) become negligible, and the 
resistance in the liquid-film boundary becomes dominant.  
 
The mass transfer characteristics and individual mass transfer coefficients for microporous 
gas-permeable hollow-fibers have been studied and the results indicate that the mass transfer 
coefficient is always controlled by the resistance in the liquid phase [Yang et.al., 1986]. This 
is due to the nature of the hydrophobic microporous membranes. Gas-phase diffusion is 
several orders of magnitude greater than liquid-phase diffusion, 104 times faster than liquid 
phase diffusion [Cussler, 1997]. The resistance in the gas-phase boundary layer can therefore 
be neglected. Gas transfer through hydrophobic membranes is by gas-phase diffusion and the 
membrane resistance can be negligible. As with aeration systems, the overall mass transfer 
can thus be estimated by evaluating the liquid-film transfer coefficient, kL. Several 
investigators have developed mass transfer correlations for aeration using hollow fiber 
membranes [Sirkar/Ho (eds) et.al., 1992; Noble/Stern (eds)  et.al., 1995; Perry, 1997]. Since 
degassing is simply the reverse process of aeration, the same correlations can be applied to the 
vacuum degassing system. The overall mass transfer coefficient may therefore be determined 
by calculating the Sherwood number (Sh) based on these correlations.  
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2.4 Analyzing and predicting mass transfer coefficients 
 

2.4.1 Experimental analysis of mass transfer coefficients 
 
An alternative method to determine the membrane resistance for a system as well as getting 
some insight to the effect of the fluid velocity on the individual mass transfer coefficients is 
the Wilson plot method. [Wislon, 1915; Prasad et.al., 1988] The assumption is that the mass 
transfer coefficient is proportional to the fluid velocity, vα, where the exponential α is an 
empirical constant for a given system. The Wilson plot gives a straight line when the mass 
transfer coefficient is plotted against the fluid velocity as K-1 vs. v-α. For hydrophobic 
membranes the resistance from the gas phase boundary layer can be neglected and the Wilson 
plot is made with data collected at high fluid velocities. The intercept represents the 
membrane resistance from which the membrane mass transfer coefficient can be determined. 
The Wilson plot is illustrated in . The data used in the plot is from this study to 
determine the membrane resistance for the composite membranes tested; reference chapter 
Error! Reference source not found., section Error! Reference source not found. for 
details. 

Figure 7
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Figure 7.  Example of a Wilson plot to determine the membrane mass transfer 
resistance, kM. 

 
 
 

2.4.2 Predicting mass transfer coefficients 
 
Describing the mass transfer coefficients of any degassing system or membrane contactor 
process is important for the design of a unit. Correlations describing the mass transfer 
coefficients of different types of mass transfer equipment have been developed, including 
various membrane module configurations. In general, the mass transfer coefficient is 
described using equation (20) and can be used to predict the performance of a system. 
[Noble/Stern (eds) et.al., 1995; Perry, 1997] 
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eα β∝ ⋅ ⋅ ⋅Sh a R b Sc  (20) 

  
 where: Sh  is the Sherwood number 
  Re  is the Reynolds number 
  Sc  is the Schmidt number 
  a, b, α, β   are functions of geometry 

 
 
The functions in equation (20) are system dependent for membrane processes and the 
respective values are specific for a module configuration and mode of operation, i.e. feed flow 
outside or inside tubular modules, co-current/counter-current/cross-flow modes etc. By 
definition the dimensionless numbers (Sh, Re and Sc) are expressed in equations (21) – (23). 
 

= L ek dSh
D

 (21) 

v
ν

= L edRe  (22) 

ν
=Sc

D
 (23) 

 
 where: kL  is the liquid-film mass transfer coefficient 
  de  is the hydraulic diameter or effective diameter 
  D  is the liquid diffusion coefficient of the component  
  vL  is the liquid velocity past the membrane 
  ν  is the kinematic viscosity of the liquid 
 
 
By convention the hydraulic diameter for hollow fiber membranes is expressed as, 
 
 

4×
=e

cross sectional aread
wetted perimeter

 (24) 

 
 
Several investigators have reported correlations based on equation (20) to predict the mass 
transfer coefficient for a given unit design. For the sake of comparison of correlations the 
membrane processes have been grouped as follows; tube side flow, shell side flow parallel to 
the fibers and shell side cross-flow.  The summary is shown in Table 1. 
 
The Schmidt number (Sc) is in fact a correction factor for temperature such that the different 
mass transfer coefficients may be compared at a normalized temperature. [Geankoplis, 1972] 
As can be seen from the summary of selected correlations reported in the literature, listed in 

, the correction factor is Sc raised to the 0.33 power.  Table 1
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Correlation Comments Reference 
Tube side flow: 

Sh=1.62(d2v/LD)1/2 

 

General Lévêque solution 
 
Lévêque, 1928 

Shell side parallel flow: 

Sh=β[de(1-φ)/L]Re0.6Sc0.33 
Sh=1.25(Re de/L)0.93Sc0.33 
Sh=8(Re de/L)Sc0.33 
Sh=0.019Gz 
Sh=(0.53-0.56φ)Re0.53Sc0.33 
Sh=0.18Re0.81Sc0.33 
 

 
For 0<Re<500, 0.04<φ<0.4 and β=5.8 or 6.1 
For 0<Re<500, φ=0.26, 0.03 
Channeling suspected, questionable accuracy 
For Gz<60 for close packed fibers 
For 21<Re<324, 0.32<φ<0.76  
For 600<Re<46000, φ=0.01, 0.03 
 

 

Prasad et.al..1988 
Yang et.al..1986 
Dahuron et.al..1988 
Wickramasinghe, 1992 
Costello et.al..1993 
Letterman.1999 

Shell side cross-flow: 

Sh=0.15Re0.8Sc0.33 
Sh=0.12Re0.8Sc0.33 
Sh=6.0Gz0.35 
Sh=1.25Gz 
Sh=1.38Re0.34Sc0.33 
Sh=0.90Re0.40Sc0.33 
Sh=0.61Re0.363Sc0.333 
Sh=1.45Re0.32Sc0.33 
Sh=0.24(Re de/L)0.59Sc0.33 
Sh=0.39Re0.29[WeEu]0.39Sc0.33 

Sh=0.9Re0.5Sc0.33 

 

For Re>2.5 (cylindrical, helical wound) 
For Re<2.5 (cylindrical, helical wound) 
For Gz>11 crimped flat membrane 
For Gz<11 crimped flat membrane 
For 1<Re<25, φ=0.70 
For 1<Re<25, φ=0.07 
For 0.6<Re<49, φ=0.003 
Developed for bubbleless aeration 
Developed for sealed fibers in jet stream 
Developed for bubbleless surface aeration 
For 1<Re<1000 (rectangular module) 

 

Wickramasinghe, 1992 
Wickramasinghe, 1992 
Wickramasinghe, 1992 
Wickramasinghe, 1992 
Prasad et.al..1988 
Prasad et.al..1988 
Côté et.al..1989 
Ahmed et.al..1996 
Johnson et.al..1997 
Weiss et.al..1996 
Crespo et.al..1994 

Note: φ is the packing fraction. WeEu = gauge feed pressure x pore diameter/water surface tension. 

Table 1.  Summary of correlations developed for different membrane module 
configurations and modes of operation. 

 
Tube side flow: 
Investigations of mass transfer in membrane contactors with tube side flow have shown that 
the Lévêque-solution can be used to predict the performance reasonably well. [Gabelman 
et.al., 1999]  
 
Shell side flow parallel to the fibers: 
Mass transfer in a hollow fiber membrane contactor is analogous to heat transfer in a shell-
and-tube exchanger. A general term referring to heat transfer has been developed which can 
be applied to mass transfer as expressed in equation (25) [Knudsen et.al., 1958]; 
 

0.6 0.330.022= ⋅ ⋅Sh Re Sc  (25) 
 
Although this term represents a fairly good description of the mass transfer it was not found 
suitable to predict experimental data. [Wickramasinghe et.al., 1992] The discrepancy was 
attributed to effects of module geometry that are not included in equation (25). Variations of 
the equation have been developed by several investigators to include geometrical factors and 
operating conditions that take into account the module configuration, packing densities, flow 
regimes and so forth. [Yang et.al., 1986; Dahuron et.al., 1988; Prasad et.al., 1988; 
Wickramasinghe et.al., 1992; Costello et.al., 1993; Letterman (ed), 1999]  One of the 
problems related to shell side flow parallel to the fibers is channeling effects around the fibers 
and fluid flow profiles along the fibers. The definition of the fluid velocity is important as the 
mass transfer coefficient is a function of the local fluid velocity along the fibers. 
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Shell side flow with cross-flow: 
With the first membrane contactors that were developed the controlling resistance to mass 
transfer was primarily controlled by the resistance in the membrane. With the development of 
new materials and improved membrane manufacturing techniques the permeability of the 
membrane has improved drastically and attention has been given to reduce other resistances 
to mass transfer. Particularly the shell side boundary layer has been investigated resulting in 
alternative modes of operation using cross-flow. [Gabelman et.al., 1999]  
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