WASTEWATER SLUDGE AS A RESOURCE

Sludge disposal strategies
 Treatment strategies for stabilization Hygienisation
 Productification of sludge

Hallvard Ødegaard

FINAL SLUDGE DISPOSAL OPTIONS

DEPOSITION/CONTAINMENT

- On land landfills phasing out
- In the ocean phased out
- Incineration ash deposition

USE ON LAND

- Direct use on farmland as fertilizer/soil conditioner
- Use of "bio-solis" (constructed soils) on green areas

Quantity and disposal of communal sludge in EU (in 1000 tons of dry solids)

	198	4	199	92	200	0	200)5
Utilisation	2.057	37	2.504	39	3.617	40	4.576	45
Incineration	518	9	715	11	2.088	24	3.872	38
Landfill	3.988	54	3.257	50	3.200	36	1.615	17
Total	5.563	100	6.476	100	8.906	100	10.063	100

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering Prof. Hallvard Ødegaard

RECYCLING ("PRODUCTIFICATION")

Production of "bio-soils"

Recovery of phosphate

Recovery of energy

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

THE "USE ON LAND" STRATEGIES

DIRECT USE ON FARMLAND

The most commonly used and probably the most sustainable sludge resource recycling option !

But : Under considerable threat !

USE OF "BIO-SOILS" ON "GREENS"

Bio-soils: Mixture of treated sludge, filling materials (sand, clay, bark etc) and nutrients (N,P,K) Primarily used on green areas (parks, sporting fields, gardens, green houses)

Prof. Hallvard Ødegaard

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

TREATMENT OF SLUDGE IN THE "USE ON LAND" STRATEGY

EU New sludge diretive (Working document, Brussels 27. April, 2000) "Sludge should be used on land whenever possible

and only according to relevant Community or national legislation"

Conventonal treatment	Advanced treatment
 Aerobic stabilization (batch) 	• Lime cond. (pH>12 over at least 3 mnts)
 Mesoph. anaerob. stab. (35°C, 15 days) 	 Lime cond. (pH>12 and > 55 °C <u>></u> 2 hrs)
 Thermoph. aerob. stab. (55°C, 20 days) 	• Therm. treatm. (<u>></u> 70°C, 30 min) +
 Thermoph. anaer. stab. (53°C, 20 days) 	mesoph. anaer. stab. (35°C, 12 days)
 Lime cond. (pH>12 over at least 12 hrs) 	• Therm. anaer. stab. (53°C, 20 hrs batch)
	• Therm. aerob. stab. (55°C, 20 hrs batch)
	 Thermal drying (> 80°C, DS> 90 %)
Dewatering av sludges included	Specified reduction of pathogens
NTNU - Norwegian University of Science and Technology	Prof. Hallvard Ødegaard

Dep. Hydraulic and Environmental Engineering

NORWEGIAN REGULATIONS

- Regulation for sludge treatment and disposal since 1995 (practiced since 1990)
- Pronounced authority goal in 1995 : 75 % of sludge produced used on land within 2000 Situation 1999 : 79 % (69 % on farmland, 10 % on green-fields)
- Regulations based on:
 - Maximum contents of heavy metals (lower limits of EU-directive)
 - Crop restrictions (not on vegetables, potatoes, fruits) until 3 yrs
 - Not allowed to be spread on grazing land
 - Liquid sludge not allowed Spread on frozen land not allowed
 - Maximum application rate (20 tons DS/hectar per 10 years)
 - Treatment requirement: Stabilization, disinfection, dewatering

New coordinated regulations on use of organic fertilizers (including sludge and "bio-soils" made from sludge) under approval procedure

NORWEGIAN AND EU REGULATIONS ON METAL CONTENT OF SLUDGE TO BE USED ON LAND

Element	Norwegiar	n regulations	EU regulations		
	Farmland	Green fields	Dir 86/278/EEC	Proposed	
Cd	2	5	20-40	10	
Pb	80	200	750-1200	750	
Hg	3	5	16-25	10	
Ni	50	80	300-400	300	
Zn	800	1500	2500-4000	2500	
Cu	650	1000	1000-1750	1000	
Cr	100	150	-	1000	

TREATMENT REQUIREMENTS FOR DIRECT USE ON LAND

HYGIENIZATION – to prevent infection of people and animals

STABILISATION – to prevent odour

DEWATERING – to ease the spreading of sludge on farmland

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Ó

APPROVED METHODS FOR DISINFECTION & STABILIZATION IN NORWAY

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

LIME TREATMENT Addition of quicklime to dewatered sludge

Design and operational criteria:

- Min. 2 hours at <u>></u> 55 °C
- Min. 2 hours at pH \geq 12

Experiences :

- Mainly at small and mediumsized plants
- High dose neccessary (typically: 500 kg CaO/ton TS)
- Low investment, high OM cost
- Granular consistency easy to spread

COMPOSTING

Design and operational criteria:

Windrow or aerated static pile:

- Min. 3 weeks at \geq 55 °C
- Min. 1 turn of windrow in 3 w. Reactor (in vessel):
 - Min. 10 days at <u>></u> 55 °C
 - Min 2 days at <u>></u> 65 °C
 - Min 2 weeks maturing

Primarily used at:

- Small and medium-sized plants
- Chem. and biol./chem. plants

Experiences :

- Variabel hygienic quality in windrow plants
- Good in dry and warm weather
- Bulking agent very important
- Better experien. in reactor plants

THERMOPHILIC AEROBIC DIGESTION Wet composting

Design and operational criteria:

- Min. 2 reactors in series
- Min. 23 hours at 50 °C or min. 10 hours at 55 °C or min. 4 hours at 60 °C
- Min. 7 days aver. res. time

Experiences:

- Min. conc. in feed sludge: 2,5 %
- Aver. VSS-red.: 43 %
- Comply with disinfect. standard

Design and operational criteria:

- Min 4 hrs at min 60 °C in aerobic pretreatment reactor
- Min 12 days at min 35 °C in anaerobic digestion reactor.

Experiences :

- Mainly at medium and large plants
- Complying well with standards
- Gas prod.: ~ 1.0 m³/kg VS_{red}
- Polymer consumpt.: ~ 3 g/kg DS
- VS-reduction : 35-45 %

PRE-PASTEURIZATION + ANAEROBIC DIGESTION

THERMAL HYDROLYSIS + ANAEROBIC DIGESTION

Design and operational criteria:

The CAMBI process:

- •Typically 30 min at 160 °C in thermal hydrolysis
- •Typically 15 days at min 35 °C in anaerobic reactor.

Basic idea:

To increase:

- VS-reduction
- Biogas production
- Dewatered sludge concentration by thermal hydrolysis

Disinfection assured at oper. cond.

The CAMBI thermal hydrolysis process

Steam used as heat source to raise temperature in three steps:

- to 80 °C by heat exchangers
- to 120 °C by recycling flash steam
- to 160 °C by injection of steam in reactor

ANAEROBIC DIGESTION + THERMAL DRYING

Design and operational criteria:

- Minimum 15 days at min 35 °C in anaerobic digester (or thermophilic).
- Typically 30 min. at 80-90 °C in dryer

Experiences :

- Becoming very popular
- Complying well with standards
- Several operation problems with dryers (lack of competence?)
- Dried sludge (90 % DS) dust problem – pelletizers installed

Primarily used at:

- Medium-sized and large plants
- Chem. and biol/chem. plants

Is drying sustainable ?

COST COMPARISONS

Gardermoen WWTP - 3.730 ton DS/year

(1995 prices, 1 EUR = 8,1 NOK, ** 7 % interest rate, 20 years depreciation time)

Methods for stabilization and disinfection	Tot. cap. cost	0 & M cost
	(mill. NOK)	(mill NOK/year)
Therm. aerobic pre-treatm. + anaer. digest.	36.0	3.15
Pre-pasteurization + anaerobic digestion	36.0	3.15
Anaerobic digestion + thermal drying	46.5	3.25
Reactor composting	48.2	3.95
Quicklime treatment of dewatered sludge	25.3	4.95

Methods for stabilization and disinfection	Annual cost **		
	mill. NOK/year	NOK/ton DS	
Therm. aerobic pre-treatm. + anaer. digest.	6.55	1,750	
Pre-pasteurization + anaerobic digestion	6.55	1,750	
Anaerobic digestion + thermal drying	7.64	2,050	
Reactor composting	8.50	2,280	
Quicklime treatment of dewatered sludge	7.35	1,970	

Necessary driving forces:

- •The urge to "get rid of" or minimize the sludge
- •The demand versus the general availability of this resource on the globe
- •The cost of the recycled product versus market price

Possible strategies for utilizing the diversified sludge as raw material:

- To get rid of "the bad things" and utilize mixture, i.e bio-soils
- To extract "the good things" and leave the residue as not marketable

The "good things" to utilize:

- Carbon (for energy)
- Nutrients (for fertilizer)
- Fe/Al (for coagulants)

The "bad things" to get rid of:

- Pathogens
- Heavy metals
- Organic micro-pollutants

PRODUCTS FROM THE "PRODUCTIFICATION" STRATEGY

Soil products ("Bio-soils")

- •Mixture of :
 - Treated sludge
 - Filling materials (sand, clay, bark etc)
 - Nutrient additives (N,P,K)
- •Asked for in the market place
 - Public use (parks, sporting fields, road embankments)
 - Private use (gardens)
- Product must be approved by health and agriculture author.

Specific recycle products

- Energy in the form of
 - Biogas from anaerobic digestion
 - Electricity from biogas
 - Biofuel from dewatered sludge
 - Heat from biogas and incineration
 - Oil from pyrolysis
- Fertilizers in the form of
 - Organic matter
 - Phosphorous
 - Nitrogen (from the sludge water)
- Carbon source for N-removal
- Coagulants (aluminium, iron)
- Building materials additives (ash)

THE MARKET POTENTIAL OF THE PRODUCTS

Resource	Genarally	Locally	In plant	Market
	marketable	marketable	recyclable	potential
Bio-soils	Yes	Yes	No	Good
Energy				
Electricity	Yes	Yes	Yes	Good
Heat	No	Yes	Yes	Fair
Biofuel	May be	Yes	Yes/No	Bad
Oil	Yes	No	No	Bad
Nutrients				
Phosphate	Yes	Yes	No	Fair
Nitrogen	No	No	No	Bad
Coagulants	No	No	Yes	Bad
Other metals	No	No	No	Bad
Build.matr.add	No	May be	No	Bad

Only bio-soils, electricity, phosphate and heat seem to have a potential

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

EXAMPLES FROM USE OF "BIO-SOILS" IN TRONDHEIM

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Prof. Hallvard Ødegaard

EXAMPLES FROM USE OF "BIO-SOILS" IN TRONDHEIM

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Decoration bushes

Road embankment

SUITABILITY FOR DIFFERENT PURPOSES OF BIO-SOILS TREATED BY VARIOUS METHODS

Example of a constructed biosoils:

20 % treated sludge, 30 % bog, 50 % mineral soil + nutrient additives

	Lime	Windrow	Reactor	Therm.	Anaerob	Anaerob	Long	Dried
Suitable	treated	compost	compost	aerob	disinfect	& dried	storage	raw
for								
Farmland	+++	++	++	++	++	++	++	+++
Topsoil	-	+	++	+	+	+++	-	-
Roadsides	+	++	+++	+	+	+++	-	+
Skiarenas	+	++	+++	+	+	+++	-	+
Landscaping	++	++	+++	+	+	+++	+	++
Energy forest	+	+	++	+	+	++	+	+++
Ready lawn	-	+	++	+	+	++	-	-
Plant schools	_	-	-	-	-	++	-	_

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Heat from incineration

Heat value of raw sludge : 14 MJ/kgDS (3,85 kWh/kgDS) ----" digested sludge : 12 MJ/kgDS (3,30 kWh/kgDS) The biogas potential should be taken out before incineration

The energy needed for evaporation of the water is balanced by the energy produced by incineration at a sludge DS of about 25 %. Higher DS gives a net heat amount

Typical process solutions :

PHOSPHATE RECOVERY

Traditional P-cycle

Stimulating factors for recovery: EC Wastewater Directive

- Limits to sludge spreading
- High sludge treatment costs
- P-recovery policy of industry
- P-recovery policy of government
- Struvite deposit problems
- P-resources demand

Drivers for the water industry

- Potential for cost savings
- Potential for cost recovery
- Potential for improved P-removal

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

FOSFORGJENVINNINGSPROSESSER

Med dagens forbruk og pris vil vi ha råfosfat i 50 år til – i 100 år til om vi dobler prisen

Teknologier:

- JernfosfatutfellingKREPRO
- Calciumfosfatutfelling
 - Crystallactor
- MAP-utfelling
 - Phosnix
- Gjennvinning fra aske

Crystallactor

Phosnix

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

PHOSPHATE RECOVERY TECHNIQUES

Beneficial with a P-concentrated stream:

- Bio-P sludge (or in sludge water from P-released bio-P sludge
- Chemically precipitated sludge (or P-released from such)

Feasibility depends strongly on circumstances in each country. Determining factors are:

- P-concentration in influent
- Sludge handling costs
- •Costs of the P-recovery technique
- Market value of P-recovery product

Calculated cost for P-recovery when used on land : 3 US\$/kgP Calculated cost for P-recovery from ash : 6-8 US\$/kgP

EXAMPLE OF A SLUDGE PRODUCT RECYCLING CONCEPT (KREPRO)

Recyclable products:

- Biofuel
- Precipitant
- Phosphorous
- Carbon source for N-removal

Removed :

- Pathogens
- Heavy metals

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

KREPRO PROCESS CONDITIONS

- Acidification
 - pH = 1-2 most inorganic salts dissolve
- Hydrolysis:
 - T = 140 °C, 3-4 bars, 30-40 min, COD hydrolysation: 40%
- Separation of organic fraction :
 - •DS in cake : 45-55 %
- Energy content of organic fraction:
 - •6-8 MJ/kg
- Ferri-phosphate step:
 - •pH = 3, DS in separated cake: 35 %, P-content: 15 %
- Recycled stream containing carbon source and coagulant (Fe):
 - Soluble COD: 10-15 kg COD/m³, Fe : 6-7 kg/m³
- Sludge reduction:
 - Mass: 60 %, Volume: 80 %

THE KREPRO FRACTIONS I

THE "BIOFUEL" FRACTION:

- 45-55 % DS (30 % ash)
- Heat value: 6-8 MJ/kg
 equal to wood-chips
- Risk of slagging and fouling in furnace lower than with wood chips
- Heavy metals < max value for use on land
- N-content higher than wood chips, i.e. higher NO_x-emissions

THE KREPRO FRACTIONS II

THE PHOSPHATE FRACTION:

- Form: Ferric phosphate
- 35 % DS (15 % as P)
- Heavy metals and org. micropoll: very low < commercial fertilizer
- Ferric phosphate not water soluble but 100 % citrate soluble
- Growth tests: Close to equally good as commercial fertilizer (4-5 % less yield)

THE KREPRO FRACTIONS III

THE RECYCLED PRECIPITANT:

- Present in recycled liquid phase
- Iron_{II} content: 6-7 kg Fe /m³
- Sufficient for P-precipitation i.e. all iron may be added to sludge treatment process
- Alternative to recycle: Precipitation as iron-hydroxide separated and recovered
- Residual metal may be separated by sulfide addition and metal sulfide precipitation

THE KREPRO FRACTIONS IV

THE RECYCLED CARBON SOURCE

- May be used in order to enhance biological N- and P-removal
- Contains high concentration of easily biodegradble COD
- Contains also ammonium, however, that adds to N-load
- May be recycled within the plant not externally
- May alternatively be co-digested with sludge to increase biogas

Parameter	Unit	Digested	Undigested
COD _{filtrered}	mg/l	13000	11000
VFA	mg/l	1100	1800
Tot N _{filtered}	mg/l	1600	820
COD/N	g/g	8.1	13.4
Direct degradable COD	%	5.5	12.7
Denitrification rate	mg NO _x -N/	1.9-2.2	1.9-3.4
(compared to acetate)	g VSS*h	(2.8)	(3.8)

Even if KREPRO is primarily a recycling method, it also reduces the amount of final sludge to be disposed of - if not recycled

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering

Pretreatment of Sludge Before Addition

CONCLUSIONS

1. Since depositing (land filling) is to be phased out as an alternative sludge disposal method, there are principally two main disposal options left; 1) Use of sludge on land, 2) Productification of sludge 2.Most experts agree that use of sludge on land is the most sustainable alternative. This requires treatment, particularly disinfection and strict regulations with respect to guality of sludge to be used. There are good treatment alternatives available based on stabilization and disinfection 3. Among the "productification" strategies the use of "bio-soils" (i.e. growth soils with sludge a central ingredient) on green areas has a great potential as an alternative to direct use of sludge on farmland 4. Another "productification" strategy is based on recycling of products from sludge that can either be used in-plant or sold to the open market The KREPRO process is one example of such a recycle system.

See you in Norway in June 2003 !!!

IWA Specialist Group on Sludge Management

INTERNATIONAL CONFERENCE

1. ANNOUNCEMENT

BIOSOLIDS 2003 Wastewater Sludge as a Resource

23-25 June, 2003

Norwegian University of Science and Technology (NTNU) Trondheim, Norway

NTNU - Norwegian University of Science and Technology Dep. Hydraulic and Environmental Engineering